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ABSTRACT

This thesis describes the construction, form, purpose and motivation for 

LogoRhythms, a sound synthesis and computer audition API intended to be used as a tool 

in the teaching o f computer programming, computer science and associated skills. 

LogoRhythms is built into Berkeley Logo (UCB Logo), a contemporary open source 

Logo interpretter. In addition to serving as a user manual complete with program 

description and code examples, this work documents an exercise in experimental 

archaeology that traces the unfortunate shift in educational computing and personal 

computing in general from an emphasis of ’computer literacy’ to one o f ’user-friendly.’ 

Arguments irj defense o f command-line and text based computing parallel those for 

computing as a tool for creative expression and are made in three ways: historical 

analysis, a new user-study and philosophical investigation. Programming is a widely 

leamable skill and debugging a useful skill transcending a utility limited to computer 

programs. Digital musical composition provides a perpetually renewable opportunity for 

custom software, underscoring that programming is a creative endeavor.
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Chapter 1 

LogoRhythms Introduction

1.1 Opening the Box

LogoRhythms is an audio synthesis, computer audition API built into U.C Berkeley Logo, 

an open source Logo interpreter. LogoRhythms adds sonic functionality to a language 

with a rich tradition in the teaching o f computer programming and problem solving, even 

with primary school students. Writing programs that draw pictures via turtle graphics has 

always been a Logo mainstay application area [2]. With LogoRhythms, a program may 

produce both visual and musical output, underscoring a relationship o f math and art and 

that computer programming is a creative opportunity.

Early versions o f Logo were short on audio functionality, in part because hardware was 

lacking. Sometimes a function such as “tone” or “play” was included that enabled the ma

chine to beep at a frequency specified as a parameter. Contemporary Logo implementations 

such as LCSI’s Microworlds have far more advanced multimedia libraries [3], This func

tionality, however, often focuses on high level manipulations such as using MIDI (Musical 

Instrument Digital Interface) to control a built-in synthesizer. Logo allows one to oper

ate the computer at a fairly low level, at least low level compared to typical desktop GUI 

(Graphical User Interface) type applications. Analogously, LogoRhythms concentrates on 

low level audio manipulation, ie. manipulating arrays o f audio data to build wavetables 

which in turn can be layered into compositions using programming devices such as proce

dures and recursion.
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www.manaraa.com

1.1 Opening the Box 2

One m ight categorize the software most frequently used by computer musicians is into 

three types: graphical applications such as sound editors that often build their interfaces 

around an oscilloscope window showing waveform or spectrum, visual programming lan

guages where functions are represented as graphical objects with pipes connecting them 

and, finally, traditional high-level typed-text languages.

Sound manipulation applications with well developed graphical interfaces run the gamut. 

Examples include: Snd, an open source, freely available sound editor from Stanford’s 

CCRMA based on the emacs interface, including extendibility via Scheme (a Lisp dia

log); the widely used Audacity; and perhaps topping the spectrum, DigiDesign’s ProTools, 

a feature rich sound editor used in professional studios for mixing and final editing. When 

using these software tools, one almost always starts with some sound data, either recorded 

or generated elsewhere. The interfaces usually allow and memory management designed 

for work with many minutes o f audio sampled at 44.1 kHz or higher. Perhaps their greatest 

application is in mixing and arranging songs, though they are certainly usable to create 

short, novel audio snippets that, for instance, could be used as a wavetable in a synthesizer 

actuated by a MIDI enabled device such as a piano like keyboard. Functions such as fil

ters and frequency transforms, usually FFT (Fast Fourier Transform), are often available. 

While filter parameters are configurable, they are not languages in which one would write 

a new filter from scratch nor do they tend to lend themselves to scripting or batch pro

cessing. W hile excellent for their task o f audio manipulation and a good aid for teaching 

the physical principals o f sound, they are not flexible programming tools. Musicians look

ing for programming tools in which to “code” sound synthesis are often drawn to a visual 

programming language, most likely either MAX/MSP or Pure Data (PD), an open source 

language idiomatically similar to MAX/MSP and maintained by one o f M AX’s creators, 

Miller Puckette [4] [5].

The programming environment, when first started, looks very much like the blank 

screen o f  a text editor, a clean slate waiting to be filled. However, the program instruc

tions are laid out on the screen in an even less linear way than most structured text based
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Figure 1.1. A Four Part Harmony Program in MAX/MSP

languages would be in a text editor window, Figure 1.1. Procedures, say for generating 

a sinusoid or the operation o f addition, are drawn onto the screen inside of a box. The 

procedure names themselves can be chosen from a list o f available primitives, somewhat 

freeing the programmer from needing to memorize the language’s lexicon as well as fa

cilitating exploration o f available functions and their effects (“hmmm... I tried a sin, now 

what does this cos thing do?”) Other boxes may contain numeric constants, have special 

functions such as toggle switches or a “bang” that sends a signal to trigger an event or 

display graphical information such as waveforms (an example o f output) or envelopes (an 

example o f input). Such boxed procedures are often functions in the sense o f taking one 

or more arguments and returning some output. Graphically, these input parameters and 

output return values come and go to other boxes connected by a line, such as a box rep

resenting a digital-to-audio converter, ie. for play through the soundcard. For instance, 

addition takes two input lines and provides a single output line. The graphical metaphor
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of programming as plumbing system, a schematic of faucets, pipes and sinks, has long 

proven itself via MAX/MSP and PD. Programs created this way are used in music heard 

on the radio, movie theaters, clubs, concert halls and public art installations and have been 

extended to applications such as controlling theater lighting; MAX programs have been 

written that take data read off external sensors such as anemometers used in a public art 

display in Seattle Public Library’s Ballard Branch, processing the numbers as part o f algo

rithmically driven musical composition. From the point o f view of enabling musicians who 

may know no other programming language, PD and MAX/MSP are successful. Students 

without formal computer science training or knowledge in other programming languages 

regularly create nontrivial programs (known as patches in MAX/MSP and PD argot) that 

perform synthesis, time-frequency transformations, event handling and filtering. However 

this idiom is not the technology of choice for more general programming tasks: device 

drivers, web servers, 3D simulations o f submarine telemetry are not written in this idiom. 

MAX/MSP cannot be written in MAX/MSP. Indeed MAX/MSP and PD offer hooks for 

extension via C/C++ for bolder explorations and customizations.

It is into this context that we introduce LogoRhythms, a music synthesis, computer 

audition API built on top o f the functional flavored, typed-text paradigm o f  the UC Berkeley 

Logo interpreter. Logo and LogoRhythms are typed-text programming languages and as 

such creations are closer in relation to applications such as Lisp, C, Java or any other 

similar programming language than to applications such as word processors, spreadsheets 

or graphical musical editing software. Yet, Logo was created for general consumption and 

not just highly specialized gurus. Pragmatically, LogoRhythms has been created to teach 

programming through music. Theoretically, LogoRhythms has been created to provide a 

focal point in a debate comparing “user-friendly” against “computer literacy.” Does user- 

friendly offer convenience at the expense o f our own intelligence? W hile this is a clear 

question the answer is murky, awash in many shades of gray. For instance, is it worthwhile 

to leam underlying mechanisms if  those details appear trivial to the task at hand? Are 

they not just an extra burden and distraction? In a marketplace where software companies
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will be more than happy to do for you at a price, the question is worthwhile to ask despite 

its ambiguities. While LogoRhythms is offered as an educational tool for the neophyte to 

explore computer programming, my advocacy will strongly favor computer literacy over 

user-friendliness.

1.2 Chapter Overviews

This thesis document introduces the LogoRhythms API and its construction, presents Lo

goRhythms as a vehicle for teaching programming concepts to neophyte programmers and 

provides a historical and philosophical context into which to consider the debate between 

user-friendly and computer literacy that spawned languages like Logo and Smalltalk. The 

document concludes, as is customary, with suggestions for additional directions and re

search beyond that contained here.

The chapters breakdown as follows:

•  Chapter 2: A Tour o f  the LogoRhythms API discusses the construction o f LogoRhythms, 

the layout of the API including some short example programs and the limitations of 

UCB Logo and LogoRhthyms.

•  Chapter 3: Computer Science LogoRhythms Style follows in the spirit o f  Brian Har

vey’s “Computer Science Logo Style” [6], The LogoRhythms API is used in two 

non-trivial synthesizer applications. The examples demonstrate an introduction to 

binary search trees and hash functions in an audio application.

•  Chapter 4: Evolution and Obfuscation: A Case fo r  Studying Antiques, Bicycles and 

Programming Languages places LogoRhythms in historical context and argues why 

examining this language is a useful exercise in experimental archeology. Every year 

more and more libraries are available to the programmer. While undoubtedly useful 

for productivity, do these libraries add layers of indirection that hide the roots of the 

computer’s operation, roots that are in themselves really quite simple?
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• Chapter 5: Flowers fo r  Algorithm examines ties between intuition and mathematics 

in a slightly different manner than usually offered by mathematicians and computer 

scientists, highlighting differences but focusing on the similarities. Writings from 

computer science and mathematics on intuition, proof, the aesthetic in mathematical 

discovery and constructionist learning are juxtaposed with phenomenological expla

nations o f the embodied mind and sense borrowed from art criticism. This diversion 

hopes to provide thought on what is literacy and how design o f artifacts is related to 

literacy, among other thoughts provoked.

• Chapter 6: Conclusion (Open ended o f  course) summarizes the implications of con

straints and failure protection in HCI design against the goal o f mechanistic revela

tion. As is customary, the conclusion makes some suggestions for further research.

1.3 A Brief Background on Motivations

This API came about from an immediate need. In the fall o f 20 0 4 ,1 volunteered to teach 

an introductory programming class at the Honomu Computer Resource Center on the Big 

Island of Hawai’i. The center, in the town where I was currently living, was funded by 

the MacAurthur Foundation as one means to try to liven up the economy in an area hit 

hard by the departure o f the sugar industry in the early 1990’s. I wanted the class to focus 

on real programming in spirit and syntax, but I thought focusing on art and music related 

applications would make the after-school program more enticing while best matching my 

own interests in new media. The language I was to use had to work on a wide selection of 

equipment, ie. Apple OS9, MS Windows and Linux operating systems. The best choices, 

I thought, were UCB Logo or Squeak Smalltalk. Squeak comes with an excellent IDE, 

as has been the tradition in Smalltalk. However, I wanted something that focused on the 

text and the command-line and subsequently choose the more striped-down Logo inter- 

-preter 11CB I ,ogo’s drawback was lack o f audio functionality. LogoRhythms nrovides that 

functionality.
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Unfortunately, the class never materialized. But, it was not the center’s directors’ skep

ticism that proved the road block, although I was told, “I think you’re trying to do too 

much, we had someone do a program last year and everyone was getting comfortable with 

the mouse by the end.” When Logo was introduced, it’s proponents at MIT successfully 

took it into schools where kids had had little or no previous exposure to computers (being 

the 1970’s few kids did) [2] [7], My failure was more pragmatic, the center lost its funding 

and closed its doors just prior to the class. Similarly, I tried pitching the idea among the 

local public primary schools. The principals I spoke with were enthusiastic. But when it 

came to actually assigning resources- a classroom with computers and an alloted tim e- the 

simple task was overwhelming. Overwhelming because these schools are chaffing under 

the US Government’s “No Child Left Behind” requirements that leaves little time but to 

teach to the tests now required by the state and federal governments. 1

I view the lack o f field testing as my biggest disappointment for this thesis, creating a 

noticeable gap in the following pages. The schools, however, are bureaucratic institutes, 

more than somewhat cold to outsiders. ’Field testing’ is best carried out by teachers or 

education students already in the fold o f the institutions. For my part, I have kept the new 

code as close as possible to UCB Logo. LogoRhythms is open source and that it strives

Euphem istically referred to as “No School Left Standing” by many educators, the federal program is 

viewed as a back-handed effort to discredit public education (and hence divert support to private institutions) 

and subsequently privatize what’s left in its wake. By September 2005, for instance, over fifty two o f  two 

hundred and eighty public schools in Hawai’i alone failed to meet the testing criteria set by the government 

[8], Upon failure, the local school board looses control and the state steps in. And what does the state do? 

Outside firms are contracted to restructure the offending school with bids in the range o f  $US250,000 per 

school. In contrast to Logo or Smalltalk, this restructuring involves quite a different and insidious approach 

to the use o f  software in the school system. Companies such ETS Pullium, a subsidiary o f  Educational 

Testing Services and EduSoft, a subsidiary o f  Houghton Mifflin offer enterprise level computer systems to 

the school. Databases contain the tests, the drills and the records o f student’s performance. In a PeopleSoft- 

esque twist, even letters to parents can be automatically generated and dispatched. Meanwhile, students sit 

at web interfaces ru nn ing  through the  drills with apparen tly  scant regard for conflicts o f  interest such as ETS 

writing both the standardized tests and training software.
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to be available cross-platform and to as wide an audience as possible, although develop

ment has been carried out on a Linux based platform. Sometimes this comes at the price 

o f performance and functionality, but not in the core functionality o f providing a stomping 

ground to explore computer programming and computer science concepts. Therefore, my 

efforts are, for the moment, limited to an engineering effort and the philosophical justifica

tion behind the design decisions. LogoRhythms is provided free to the community with the 

hope that someone with stronger ties to the educational institution will find it useful.
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Chapter 2 

A Tour of the LogoRhythms API

The LogoRhythms API is mostly consists o f primitives written directly into the UCB Logo 

interpreter using the C language. Some procedures are offered as part o f UCB Logo’s 

logolib, a library of procedures that appear to be primitives but are written in the Logo 

language. Functionally, the procedures can be divided into those that produce sound by 

simply reading through an array o f floats until the final index is reached and wavetables, 

ie. short arrays that are read repeatedly as loops. It is not only possible but encouraged 

to create sounds using the array manipulation procedures and then use those arrays, or 

snippets of them, as wavetables.

This is an API with a fair amount o f redundancy. For instance, the s o u n d  and s o u n d w t 

procedures are superfluous to the h a rm o n y  and h a rm o n y w t procedures. However, in 

keeping with the early design philosophy o f Logo, the API is built to allow one to move 

from simple operations like t o n e  that uses a sinusoid wavetable and a predefined ampli

tude envelope to h a rm o n y w t that allows the programmer to specify an arbitrary wavetable, 

multiple frequencies and envelopes. The format for arguments is conserved across all 

wavetable functions and is either frequency, amplitude and duration or frequency and then 

a list pair o f amplitude and duration. Not only should consistency in argument format help 

avoid confusion but allows for a single procedure to return a list o f arguments usable in a 

variety o f different wavetable procedures.

In this chapter, I will briefly discuss the construction o f LogoRhythms before elaborat

ing on the API itself. Several short examples are given as suggestions for its use as well as
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to highlight syntactical possibilities o f programming in a functional style.

2.1 Construction

LogoRhythms relies heavily on two outside, open source pieces o f software. The first 

is the UCB Logo interpreter maintained by Brian Harvey and colleagues at UC Berke

ley [9]. UCB Logo provides the framework and the parsing functionality within which 

LogoRhythms is implemented. O f course, UCB Logo also provides an entire computer 

language with which to write many types o f programs. The second piece o f indispensable 

software is the PortAudio Portable Real-Time Audio Library maintained by Ross Bencina, 

Phil Burk and others [10]. PortAudio offers a C language audio API usable across most of 

the major platforms including Apple OSs, MS Windows and Linux/Unix. This API frees 

the application writer from needing to worry about sound card or platform specific nuances 

at the application level. PortAudio provides only the interface to the sound card and does 

not provide the synthesis or audition functionality that is organic to LogoRhythms.

LogoRhythms was initially implemented using version 5.3 o f UCB Logo. Although re

leases of UCB Logo are infrequent, version 5.5 has recently been released. This document 

refers to LogoRhythms implemented in UCB Logo version 5.5. To facilitate merging, an 

effort was made to limit modifications o f  UCB Logo code. In addition to the UCB Logo 

makefile, modifications occur mostly in one o f two places: globals.h and init.c. Both of 

these modifications involve making the names o f the new primitives available to the inter

preter. In globals.h the prototypes o f the LogoRhythms procedures are given while init.c 

contains a multidimensional array named p r im s  that lists the names o f the logo primi

tives, the number o f  arguments each primitive accepts and the name o f  the corresponding 

C procedure to invoke within the interpreter. Unix specific thread code has been added 

to eval.c and is conditionally compiled. PortAudio files remain separate from interpreter 

code. The remainder o f LogoRhythms is contained in separate files as follows:

• sound.h: Here one will find constant declarations, prototypes and two abstract data
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types, EnvelopeData and OscillatorData. These new types are intended to be used 

as linked lists, ie. one EnvelopeData instance may point to another EnvelopeData 

instance, a necessary construction when building harmonies.

•  wave.c: Source code for functions operating on arrays o f data are mostly given here. 

In the LogoRhythms’s argot, wave refers to a Logo array o f  floats; although, to the 

Logo programmer there is a simple number type that does not distinguish between 

floats and integers.

•  sound.c: Procedures relying on wavetables are all found in sound.c. This includes a 

number o f  procedures that take arbitrary arrays o f floats. The array argument is then 

played as a wavetable, ie. looped repeatedly.

•  fft.c: Fast Fourier transforms between the time and frequency domains are kept 

here. This code is really just slightly modified versions o f those found in Numer

ical Recipes [11]. The LogoRhythms’s implementations use Logo data structures but 

the logic otherwise remains the same.

•  audiofilter.c: Strictly speaking, this is not an official part o f the LogoRhythms API. 

This file contains code for a biquad filter based on the implementation in Perry 

Cook’s STK. The corresponding Logo primitive, F IL T E R W A V E , is not further dis

cussed in this document and is not presently considered a formal part of the API.

There are two significant downsides from limiting modifications to native UCB Logo 

code. First, the limitation stops one from making improvements they wish existed. For 

instance, turtle graphics is kept simple in order to maintain cross-platform portability. Win

dow redrawing behavior ends up being a bit quirky on Linux as well as lacking a method 

to add text to graphical output- a serious flaw when creating graphs o f sound waves where 

one would like to keep track o f amplitude and sample number. Making these improve

ments are important to LogoRhythms but presently beyond its scope. Second, all Logo 

datatypes are under the covers, kept in a massive structure called a NODE defined in the 

struct lo g o _ n o d e , a type regularly used in both linked lists and graphs. The lists and
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arrays, even arrays o f floating point numbers defining audio data, are in fact lists o f NODE. 
In places this affects a significant performance penalty. To reiterate, LogoRhythms pur

ports to be useful in teaching programming through sound. If  one is seeking an optimally 

performing real-time audio API, this is likely not it.

The UCB Logo NODE does provide several advantages. First, it provides type checking 

functionality and new primitives which use it, which is all new primitives, immediately 

have access to the parser’s error checking. Secondly, Logo is a descendant o f Lisp and 

other than a number type, the list is the predominant data structure. Similar to Lisp, lists 

o f  commands can be executed or even used as anonymous functions. Even Logo’s arrays 

really are little different in either operation or implementation from Logo’s lists: both use 

NODE. The Logo interpreter has capitalized on the relation with Lisp by providing C macros 

such as c o n s  , c a r  and c d r  with which to operate on lists o f NODE within the C code. 

Unfortunately, this conservation o f idiom only goes so far and semantics such as c a a d d d r  

is not possible as it is in a Lisp interpreter such as Scheme.

2.2 API

The following is taken from the user manual for LogoRhythms found in a file called 

“SOUNDAPI” in the directory where UCB Logo has been unrolled and built. Logo is 

case insensitive and mixed cases will be found for the same command in the code exam

ples below, ie. make, mAke and MAKE all reference the same primitive. The ubiquitous 

mAke is the assignment function; for instance, MakE "a siNewAVe 22 0 assigns an 

array o f floats representing one sinusoidal cycle to the variable a.

2.2.1 Activating

SOUNDON
Open a stream to the audio device. In other words, this needs to be called before using 

any sound producing method described here (except TONE). SOUNDON is sort o f an audio
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equivalent to PENDOWN in turtle graphics. The sound is on by default.

SOUNDOFF
The opposite o f SOUNDON.

2.2.2 Procedures that Use a Wavetable

TONE f r e q  a m p l i t u d e  m sec

Make a sine wave tone with a fixed envelope. This function will call SOUNDON i f  necessary. 

TONE will output to the audio card, ie. it should make a noise:

ex. TONE 220 .9 1000

SOUND f r e q  [ l i s t  o f  l i s t s  d e s c r i b i n g  e n v e l o p e ]

The audio is still a simple sine wave. However, the envelope can be specified as a list of 

value pairs. The first value gives the amplitude (0 to 1) and the second value the number of 

milliseconds to reach that amplitude (changing linearly).

ex. SOUND 220 [[.9 10] [0 800]]

This will produce a sine wave with frequency o f 220Hz that reaches an amplitude o f .9 

(90% of full volume) in 10 msec before decaying linearly to silence over 800 msec.

HARMONY [ l i s t  o f  [ f r e q  [ l i s t  o f  l i s t s  d e s c r i b i n g  e n v e l o p e ] ] ]  

HARMONY extends SOUND. Sine wave oscillators can be combined, each using a frequency 

and envelope description similar to that of SOUND.

ex. MAKE "a LIST 220 [[.9 10] [0 990]]
MAKE "b LIST 440 [[.4 10] [0 660]]
HARMONY LIST a b
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REST msec

Pause for a duration given in milliseconds.

TONEWT w a ve^ a r r a y  [ f r e q u e n c y  a m p l i t u d e  msec]

This function is very similar to TONE. Here one may specify an arbitrary array to use as 

the wavetable.

ex. make "a sinewave 22 0 
tonewt a [220 .9 1000]

SOUNDWT w a ve^ array  [ f r e q  [ l i s t  o f  l i s t s  d e s c r i b i n g  e n v e l o p e ] ]

Similar to SOUND, SOUNDWT provides a finer level o f  control in defining an amplitude en

velope.

ex. make "a squarewave 22 0
soundwt a [220 [[.9 1000]]]

HARMONYWT w a v e . a r r a y  [ l i s t s  o f  [ f r e q  [ l i s t s  d e s c r i b i n g  e n v e l o p e ]  ] ] 

HARMONYWT provides the finest level o f  control over wavetables. It operates similarly to 

its sinusoidal cousin HARMONY. Note that the same wavetable, given by wavearray, will be 

used for all frequencies.

ex. make "a trianglewave 220
harmonywt a [ [220 [[.9 1000]]]

[440 [ [.9 1000]]] ]

SETTIME e n v e l o p e  b a s e - t i m e

SETTIME is essentially a normalizing function implemented as a library procedure. SOUND 

and HARMONY functions all use a list o f amplitude and duration pairs such as [[.9 50] [0 

950]]. SETTIME will take such a list and normalize it using baseJime as a denominator.

Its intention is to allow many different envelopes to be easily forced into the same time 

signature.
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ex. make "new_envelope settime [[.9 50] [0 950]] 500

Here, " n e w .e n v e lo p e  is given the new values o f [[.9 25] [0 475]] so that the durations 

sum to 500.

2.2.3 Procedures that Use Logo Arrays to Hold Audio Clips

SINEWAVE f r e q

Generate one cycle o f sine wave values at the specified frequency.

ex. MAKE "wave SINEWAVE 22 0 

TRIANGLEWAVE f r e q

Generate one cycle o f triangle wave values at the specified frequency.

ex. MAKE "wave TRIANGLEWAVE 22 0 

SQUAREWAVE f r e q

Generate one cycle o f square wave values at the specified frequency.

ex. MAKE "wave SQUAREWAVE 220 

NOISE msec

Generate msec milliseconds o f noise:)

ex. MAKE "wave NOISE 1000 

PLAYWAVE w a v e - a r r a y

Play, ie. send the data to the speakers, the clip specified in the wave_array argument. 

Playback occurs at 44 .1kHz, give or take the processor’s ability to maintain that rate.

ex. PLAYWAVE wave

COPYWAVE w a v e . a r r a y  n u m -cop ie s

Make num_copies number o f copies of wave_array. So, if  wave_array has a COUNT of 800, 

COPYWAVE w a v e _ a r r a y  2 will return a new array of COUNT 1600. The following 

example should produce (more or less) one second of a 220Hz sine wave.
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ex. MAKE "a SINEWAVE 220 
MAKE "a COPYWAVE a 22 0

WAVEENVELOPE w a v e -a r r a y  [ e n v e lo p e  s i m i l a r  t o  t h a t  o f  SOUND f u n c t i o n ]  

This can be used to add an amplitude envelope to a sound clip (ie. what I ’ve been calling a 

wave array). The form of the argument is very similar to that for SOUND.

ex. MAKE "a SINEWAVE 22 0 
MAKE "a COPYWAVE a 220
MAKE "a WAVEENVELOPE a [[.9 50] [0 950]]

COMBINEWAVES [w a v e . l  wave-2 . . . wavecn]

This function will combine its wave arguments into a new wave array with a COUNT equal 

to that of the longest o f the arguments. The shorter arguments will simply be repeated as 

necessary to fill the space. Amplitudes are normalized automatically.

ex. MAKE "a SINEWAVE 220
MAKE "a COPYWAVE a 220
MAKE "b SINEWAVE 440
MAKE "b COPYWAVE b 440
MAKE "wave COMBINEWAVES

ADDWAVEAT wave-1 wave-2 m sec

This will insert wave_2 into wave_l at msec milliseconds after its start. I f  msec hap

pens to fall after the end of wave.l, a silence will be played as necessary before wave_2 
commences. As with COMBINEWAVES, amplitudes are normalized, which means that the 

volume should be the same after addition as before.

CUTWAVE wave . a r r a y  [ s t a r t  end]

Cuts a segment out o f the wave array argument starting at ’’start” samples until ’’end” sam

ples. One can use Logo’s COUNT function to query for the total length o f an array.

ex. MAKE "a SINEWAVE 22 0
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;; COUNT a shows its length to be 200 samples 
MAKE "a CUTWAVE a [0 50]
MAKE "a COPYWAVE a 880

REVERSEARRAY w a v e -a r r a y

Returns a new array with the order o f indices reversed. REVERSEARRAY is implemented 

as a Logo primitive for performance. Still, large arrays may be slow to reverse.

ex. MAKE "drum READAUDIO "drumhit
MAKE "reversed\_array REVERSEARRAY "drumhit

REVERSEWAVE w a v e -a r r a y

Syntactically this is identical to REVERSEARRAY; however, it is implemented in Logo as 

a library procedure. Although considerably slower, library procedures are more readily 

available to the student as a code example.

FFT w a v e -a r r a y

Transforms via fast fourier transform w a v e - a r r a y  from a time domain to a frequency 

array zero-padding as necessary.

ex. MAKE "w COPYWAVE SINEWAVE 220 22 0 
MAKE "wf FFT W

IFFT f r e q u e n c y - a r r a y

Transforms via fast fourier transform from the frequency domain to the time domain. Using 

FFT followed by IFFT yields almost the same wave originally fed to the FFT.

ex. MAKE "w IFFT wf

NORMALIZEWAVE wave . a r r a y

Implemented as a library procedure, NORMALIZEWAVE will set the highest amplitude 

in w a v e _ a r r a y  to the max volume, adjusting all other values accordingly. This is par

ticularly useful if  COMBINEWAVES has created a clipped signal. To further adjust the 

volume, try the SCALEWAVE or VOLUME controls.
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ex. MAKE "wave NORMALIZEWAVE wave 

EVENWT w a v e -a r r a y

EVENWT is a library procedure intended to be used on wave arrays that will serve as wave 

tables. Since a wave table array is potentially played many thousands o f times a second, it’s 

useful if the first value and last value are nearly similar. Large differences may introduce a 

clicking or buzz. EVENWT chops off the end o f the input w a v e _ a r r a y  until the first and 

last values are similar (but not necessarily identical). This does run the risk of clipping the 

entire wave!

ex. MAKE "wt EVENWT wt 

DOWNSAMPLE w a v e -a r r a y  f a c t o r

This library procedure subsamples a wave array by the factor specified in the second ar

gument. It will return a smaller array (unless the factor is 1). In the example below, w2 

contains half as many sample points as w l. Since LogoRhythms’s playback rate is fixed at 

44 .1kHz, w2 will have a pitch twice that of w l.

ex. make "wl TRIANGLEWAVE 440 
make "w2 DOWNSAMPLE wl 2

SCALEWAVE w a v e -a r r a y  d e l t a

This library procedure will modify the amplitude o f wave_array by the factor delta.

ex. make "w COPYWAVE (SQUAREWAVE 440) 440\\ 
make "w_quiet SCALEWAVE w .5

VOLUME w a v e -a r r a y  d e l t a

This library procedure is simply an alias of SCALEWAVE.
RECORDWAVE m sec

Will record msec o f audio into an array via the audio card’s audio to digital converter. O f 

course, some sort o f analog sound capture or producing device needs to be plugged into the ■ 

audio-in, such as a microphone, electric guitar or tone generator.
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ex. MAKE "w RECORDWAVE 1000 

DRAWWAVE wave

This function is implemented in logo as a library procedure. So one may view it’s code by 

looking for the file ’drawwave’ in the logolib directory.

DRAWWAVE renders a drawing o f the wave into a turtle graphics window compressing 

the time axis, by its best guess, to fit more or less across the width o f the window. All 

sample points are accounted for to avoid any potential aliases due to subsampling. Note 

that i f  a new wave is drawn into the same window, it w ill also take up the whole width o f  

the window but not necessarily have the same time axis scale, Figure ??.

ex. MAKE "w SINEWAVE 6 0 
DRAWWAVE w

2.2.4 Miscellaneous Procedures

READAUDIO f i l e n a m e

Reads an audio file and returns an array o f the data. The file format is really just a subset 

o f the Sun/NEXT .au format: stereo or mono 16bit linear at a 44.1kHz sampling rate. 

This procedure will give a warning if the file type looks incorrect, but will read in the file 

anyway. If  you have trouble reading .au files, you may want to check its format and convert 

it to the above specs using a program like sox.

ex. MAKE "w READAUDIO "cool_song.au 
PLAYWAVE w

WRITEAUDIO f i l e n a m e  wave

Write an array to disk. While this will write any Logo array to disk, it’s really meant to be 

used with audio data. Because o f the quantization in converting to 16bit PCM data (from 

the native floating point format), there’s no guarantee that the exact same numbers will be 

read back in using READAUDIO as existed in the original array; they should, however, be 

close enough for the ear. The format is Sun/NEXT .au. However, the .au suffix is optional.
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Figure 2.1. Sinewave drawn in LogoRhythms
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ex. WRITEAUDIO "my_new_cool_song.au wave 

BEATBOX [ i n s t r u c t i o n  l i s t  ] s c a l e

This library procedure acts as sort o f a bucket for all o f the sound producing procedures 

such as tone, tonewt, sound, soundwt, harmony, harmonywt and playwave. The procedures 

will simply be called in the order in which they appear in the instruction list supplied as the 

first argument.

ex. make "wv readaudio "drumhit
make "beat [ [playwave wv] [rest 100]

[playwave wv] [rest 100]
[tone 220 .6 500] [rest 100] ] 

beatbox beat 1

In this example, notice how every other instruction is a rest. The scale parameter will 

adjust these rests causing the beat to speed up or slow down. For instance, a scale o f 2 will 

cause the beat to be played twice as fast; a scale o f .5 will affect a beat half as fast.

2.3 Short Examples: Audio in a Functional Paradigm

LogoRhythms strives to be simple and the arguments’ forms may be consistent, but there’s 

no escaping the lengthiness and complexity o f the required parameters. Lisp, Logo’s pro

genitor, is often criticized for the morass of parenthesis marking the start and end o f a 

list confronting the programmer. Neophytes are commonly warned to never endeavor in 

Lisp programming without an editor that will automatically match these parenthesis. Logo 

cleans up some of this mess, but lists, denoted by brackets in Logo, are still core to the 

interpreter’s operation. Lists have many advantages. They are similar to arrays except that 

a single list may contain multiple data types and easily allows dynamic lengths, ie. ele

ments may be added without explicitly allocating additional memory for the list. Lists may 

contain program instructions, are conducive to recursive programming, and, in Logo, may
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even be accessed using an index (again similar to an array). Programmers already comfort

able with abstract data types such as C structs or the classes o f an object-oriented language 

may wish that some of the arguments were contained in such a data structure. Compara

bly long and complex parameter lists are found in Nyquist, a much more advanced audio 

language that uses Lisp syntax where Nyquist envelopes are also linear interpolations [12] 

[13]. The function is specified (env tl t2 t4 11 12 13 dur) where t l ,  t2 and t4 specify 

time segments and 11,12 and 13 durations (dur is optional and defaults to 1.0). The t4 pa

rameter describes the segments at the end o f the envelope while the missing t3 is inferred 

thus freeing the user from keeping track of the total running length o f the segment. The 

env  procedure is a special form o f  pwl procedure that specifies piecewise linear functions 

and can be used for envelopes, glissando, filter specifications and more. The pwl function 

takes a variable and potentially long list of arguments: (pwl tl 1112 12... In) . In a func

tional language such as Logo, encapsulation and higher order functions can help address 

these messy arguments. Where C or C++ encapsulate data in a struct or class respectively, 

Logo encapsulates only at the function level, but in a way that is much tighter by trying 

to avoid global or class scoped variables. Several examples follow providing a demonstra

tion o f how the LogoRhythms API can be used paying close attention to cleaning up the 

arguments via encapsulation and higher-order functions.

Let’s start with the following example creating a fourpart harmony o f sinusoids.

harmony [ [440 [[.9 50] [0 450]]]
[880 [[.3 50] [0 375]]]
[220 [ [.1 50] [0 450]]]
[660 [ [ .05 50] [0 450]]] ]

The hard coded parameter is a mess! Thirty four brackets help separate lists nested four 

levels deep.

Encapsulation, in a broad sense, refers to the containing, even hiding, of information 

through scoping rules. Take for example the list that makes up the argument to HARMONY. 
This list can simply be encapsulated inside of another function. The list data is local to 

the second function and returned by it. O f course, it’s not hard extend the functionality of
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this second function such as adding parameters that modify the list to be returned. Here’s a 

function called f  o u r p a r t  that will produce a list parameter for the HARMONY primitive.

to fourpart :freq 
local [a] 
make "a []
make "a fput list freq [[.9 '50] [0 450]] a
make "a fput list freq*2 [[.3 50] [0 375]] a
make "a fput list freq*0.5 [[-1 50] [0 450]] a
make "a fput list freq*3/2 [[.05 50] [0 450]] a
output a 

end

Now the HARMONY function can be called using the information encapsulated in 

f o u r p a r t ,  for example: 

harmony fourpart 44 0

Ostensibly, this is a much clearer semantics. If  the student programmer-musician also 

implements f o u r p a r t ,  even better. This first example demonstrates function composition 

o f the form f(g(x)) where f(x) = HARMONY g(x), g(x) = FOURPARTx and x = 440.

Templates are UCB Logo’s device to allow the use o f anonymous functions or, more 

specifically, lists o f  instructions. The real flexibility o f templates begins to be realized when 

examining UCB Logo’s APPLY function. APPLY itself takes a function as its first argu

ment. The symbol “?” is called an explicit-slot and marks the parameters of the template 

function. The code:

APPLY [? * ?] [4]

will produce the product 16. Returning to the harmony example, consider the following 

procedure:

to sing :a.func :a.list
ifelse (empty? :a.list) [ ]
[ apply :a.func (list (first ra.list)) 
sing :a.func (butfirst a.list) ]

end

This recursive procedure is very similar to map functions found in many functional 

languages. Its first parameter is a template. The second parameter is a list of arguments to
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the anonymous function (ie. the template). It will recursively traverse over the list “a.list”

applying each value in the list to the anonymous function “a.func.” It differs from other

map functions in that nothing, such as a new list, is returned since it’s intended to be used

with an 10 affecting anonymous function. Our last code example uses t o  s in g  with the

previous harm ony f o u r p a r t  demonstration to create a simple composition .

make "notes [440 494 554 587 659 739 830 880] 
sing [harmony fourpart ?] notes

Do re mi fa so la ti do.

Using templates in this manner is similar to the use of lambda expressions in Lisp 

and the semantical distilling demonstrated here with LogoRhythms can be analogously 

accomplished using lambda expressions in a Lisp based language such as Nyquist

In this first example, the timing was left up to the definitions o f the envelopes. This 

will always be true when using LogoRhythms’s wavetable relianf procedures. However, 

templates of anonymous functions can simulate dynamic levels and time signatures o f staff 

music.

First, several variables are created in the Logo workspace:
make ".base 1024

make "loud .9 
make "normal .3 
make "soft .1 
make "silent 0

The " . b a s e  variable provides the timing o f a single measure in milliseconds. It also 

acts as a sort of global variable- Logo isn’t a strict functional language that would normally

completely avoid such scoping. Next, two wave arrays are created named buzz and breath.

make "buzz copywave squarewave 44 0 44 0 
make "a copywave trianglewave 220 220

make "b noise 1000
make "b volume b .2
make "breath combinewaves list a b

The code snippet uses the v o lu m e  procedure. Implemented as a logo library pro

cedure, it runs a bit slower than the alternative syntax of m ake "b  w a v e e n v e lo p e  b
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t [ .  2 1 0 0 0 ] ] ,  which is implemented as a primitive. However, v o lu m e  provides seman

tic clarity and, in this example, the wave arrays b u z z  and b r e a t h  will only be created 

once. The intention is to use the arrays with the to n e w t  procedure. One would normally 

think of a wavetable as a single period, or adequately long segment o f a non-repeating 

waveform! The waves b u z z  and b r e a t h  in fact correspond to approximately one sec

ond of output. Therefore, when setting the frequency parameter in t o n e w t ,  1 will simply 

play the clip a single time; 2 will play the clip twice or twice the frequency. While this 

doesn’t provide much control over frequency, for instance excluding partials, it simplifies 

the semantics in the proceeding example. A more refined version is suggested later.

The next step is to create some procedures taking care of note durations. The following 

two examples, h a l f  and q u a r t e r ,  provide the general framework which would extend 

to any duration one might want to name (sixteenth, triplet, etc...).

to half :func.tonewt :vol
composenote func.tonewt vol .base/2 

end

to quarter :func.tonewt :vol
composenote func.tonewt vol .base/4 

end

These procedures again make use o f templates and anonymous functions, ie. instruc

tion lists. The argument : f u n c . tonewt has been named to suggest that the instruction 

list will contain the tonewt procedure. Composenote is a helper function that glues 

together the argument for tonewt and then executes the command via apply.
to composenote :func.tonewt :vol :t 

local [args]
make "args list fput 1 list vol t [] 
apply func.tonewt args

end

With this background work completed, the following syntax has been enabled:

whole [tonewt breath ?] normal 
quarter [tonewt buzz ?] silent 
half [tonewt buzz ?] soft 
quarter [tonewt buzz ?] silent 
sixteenth [tonewt breath ?] normal 
quarter [tonewt buzz ?] silent
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The subjective assessment o f readability will be left to the reader. For example, were 

this example being used in a programming class for fourth graders, a not unreasonable 

expectation, the background functions such as q u a r t e r  and c o m p o s e n o te  can be pro

vided by the instructor if  need be. This example could be made more flexible by using the 

so u n d w t procedure and allowing the frequency and amplitude envelope to be specified 

on a per call basis. To allow a wide range of frequencies, wavetable could be used in the 

more traditional sense- as a short (one or a few cycles) o f the sound wave. The final syntax 

could take many forms, but with little modification to the example above, the following 

would be possible:

quartertone [soundwt buzz ?] [330 [[.9 50] [0 500]]]

A new function has been introduced, q u a r t e r t o n e .  Ostensibly this would be a mod

ification of q u a r t e r .  The absolute duration is given by the sum of the envelope segment 

lengths, [ [ . 9  50] [0 5 0 0 ] ] .  The LogoRhythms logo library procedure s e t t  im e is

useful in converting this duration to a relative length; see the API note above.

2.4 Summary

To summarize, the LogoRhythms API can roughly be split into procedures operating on ar

rays o f floating point numbers representing audio data and procedures that use wavetables. 

Of course, wavetables are simply arrays o f floating point audio data, albeit usually just a 

short segment representing one or a few cycles. Since many o f the procedures operating 

on these wave arrays, for instance c o m b in e w a v e s , are really working on linked lists of 

the NODE structure, they’re relatively slow. Manipulation o f arrays should occur ahead of 

playback time with the actual execution of sound taking advantage o f previously composed 

wave arrays. A student composer can create timbres using the wave array manipulating 

procedures and then use those arrays as wavetables in the appropriate procedures.

From procedure to procedure, the design is graduated. Simple procedures such as t o n e  

allow easy entry into the API for the complete beginner, ie. low floor. These procedures
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proceed to more complex and feature rich procedures such as h a rm o n y w t with some 

overlap between features. Given the right parameters, H arm onyw t can produce the exact 

same note as t o n e .

Lists lend themselves to powerful and elegant programming solutions such as recursion, 

can be used as anonymous functions in the form of instruction lists as well as offering a 

growable container o f  mixed types. However, even given the effort to create clean, simple 

procedure names, list arguments can be unwieldy. Relying on functional language features 

such as templates and anonymous functions can greatly clean up syntax. Ideally, students 

may advance from being provided helper functions like s i n g  and q u a r t e r  to using 

anonymous functions and recursion in their own procedures.

In the next chapter, I will extend the examples above to demonstrate the introduction of 

common computer science problems using audio based programs. Two synthesizers will 

be built using binary search trees and hash look-up tables respectively.
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Computer Science LogoRhythms Style

3.1 Extending Harvey’s Programming Primer

The previous chapter introduced the LogoRhythms API and provided some short examples 

o f how one might use its procedures. A combination o f carefully selected nomenclature 

along with instruction lists passed as anonymous functions was employed to syntactically 

approximate natural language. In this chapter, more moderately complicated applications 

o f the LogoRhythms API is presented.

Brian Harvey’s Computer Science Logo Style Volume 3: Advanced Topics shows Logo 

stretching its wings on topics such as artificial intelligence and compiler construction (a 

Pascal compiler) and non-trivial data structures such as trees [6]. First, I ’ll extend Har

vey’s example of balanced binary trees, including it as a central component in a digital 

synthesizer instrument. One might approach musical composition with LogoRhythms as a 

programming problem, ie. a program and its logic will dictate what notes will be played 

and when. Alternatively, performing the piece is simply a matter o f running the program. 

The following example will allow a performer to use a LogoRhythms program to inter

actively perform music via the computer keyboard. In the second application, a different 

sort o f instrument will be built, one that plays sampled music clips. For variety, a new 

data structure will be used, the hash look-up table. For computer scientists reviewing this 

document, these devices will be old familiar friends. For new programmers examining 

LogoRhythms, they may be an introduction to widely used data structures. The following
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discussions assumes a basic understanding o f programming, not necessarily an expert level.

3.1.1 Binary Trees with AlphabetSynth

The requirements for the first synthesizer are straightforward. First, we should allow a 

flexible mechanism for organizing a variety o f  sounds that may use either wavetables or 

sampled audio clips. Second, we need a mechanism by which the musician can select 

what notes to play and when. The first requirement will be met with a combination of 

balanced binary trees and anonymous functions. As for the instrument’s interface, let’s 

use the closest at hand: the computer keyboard. O f course, in keeping with the tradition o f 

computer software and musical groups, the program will also need a name: AlphabetSynth.

In a nutshell, a balanced binary tree will provide a structure for storing synthesizer com

mands. The node’s value, for instance, might be the base frequency o f the intended note or 

perhaps the duration o f a percussive hit. The tree also provides a rapid indexing scheme to 

speed searching out a note for a given key stroke.1 Harvey introduces binary trees with a 

hardcoded example of telephone area codes and their respective cities. Here’s an abridged 

version o f his data: [ [202 WASHINGTON] [404 ATLANTA] [808 HONOLULU]
] .  The data is given in a list of lists. While the tree will also be built using a list, this list 

isn’t there yet. However, it should be noted that this first list has been numerically sorted by 

area code. Using a sorted list will allow us to construct a balanced tree with a short recur

sive function and without using rotation functions. The final form of this simple tree would 

be: [ [404 ATLANTA] [[202 WASHINGTON]] [[808 HONOLULU]] ] . Each 

level o f the tree is a list o f  length three. The first element is the node, the second element 

a branch following the lesser value and the last element the branch following the greater 

element. Without re-presenting Harvey’s code, his approach is simple. A pair o f proce

1This document’s first audience, the academics evaluating its content, are, o f  course, intimately familiar 

with balanced binary trees. However, others may want to explore a simpler version o f  the data structure given 

in Computer Science Logo Style Volume 3: Advanced Topics, particularly Chapter 3 “Algorithms and Data 

Structures.”
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dures named b a l a n c e  and b a l a n c e l  take an input list and find its middle, ie. a median 

(or adjacent) value. The values to the left o f  this value will fall on the lesser branch while 

values to the right are greater. This process is then run recursively on each half o f the 

subsequently shorter lists until all elements have been accounted for. In the code for Al

phabetSynth, found in Appendix A, I ’ve renamed b a l a n c e  and b a l a n c e l ,  b t r e e  and 

b t r e e h e l p e r  respectively.

Now, let’s translate Harvey’s area code data to something more in the spirit o f Alpha

betSynth. For instance [8 08 HONOLULU] might look like [440 [so u n d w t :w ave 

[ [ . 9  50] [0 200]]] where 440 is the frequency in hertz (an A in this case) that will

serve as the node in the binary tree and HONOLULU becomes an instruction list that Alpha

betSynth can potentially execute via Logo’s r u n  procedure. Similar to the list o f  telephone 

area codes, a list of s o u n d w t instruction lists are generated on the semitone starting with 

a frequency that we’ll provide as a frequency.

But let’s put the binary tree list aside for the moment. S o u n d w t requires a wavetable 

parameter. Creating that wavetable is the heart o f the synthesizer, as in sound synthesis, 

and will be performed via additive synthesis using the LogoRhythms primitives for array 

manipulation. FM synthesis is also a possibility and could be quickly implemented using 

a subsampling factor on a carrier wave that was modulated via a second wave. Since real

time FM is not implemented at the level o f native C code, building an FM conditioned 

array for use in the wavetable procedures would likely provide the best performance. The 

additive synthesis used here simply sums waves, occurring in the procedure s y n th .
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to synth

local [ wl w2 w3 freq ]

;; add a combintion of sinusiods 
make "freq 440 
make "amp 1
make "wl sinewave freq 
make "i 2 
repeat 2 [

make "w2 sinewave freq * i
make 11 i i*2
make "amp amp/I.4
make "w2 volume w2 amp
make "wl combinewaves list wl w2

]
make "w2 sinewave freq/2 
make "w2 volume w2 amp/2 
make "wl combinewaves list wl w2

;; add a combintion of trianglewaves 
make "freq 430 
make "amp .6
make "w2 trianglewave freq
make "w2 volume w2 amp
make "wl combinewaves list wl w2
make "i 2
repeat 2 [

make "w2 trianglewave freq * i
make "i i * 2
make "amp amp/l.4
make "w2 volume w2 amp
make "wl combinewaves list wl w2

]
make "w2 trianglewave freq/2
make "w2 volume w2 amp/2
make "wl combinewaves list wl w2

make "n noise 1
make "n volume n .05
make "wl combinewaves list wl n

make "wl normalizewave wl 
make "wl evenwt wl

output wl 
end

This procedure might be thought o f as a sort of palette where waves are combined
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at different amplitudes and frequencies until the musician-programmer is happy with the 

timbre. For those new to additive synthesis, perhaps the trickiest part of the procedure is the 

call to n o rm a l  i z e -  a slow function that first must find the largest value in the array and 

then adjust all other values proportionally, ie. requiring two passes. This is an important 

step, however, as the wave will otherwise be too large and clip when played, loosing the 

nuances so carefully added through these many additions. Now it’s time to return to the list 

o f  notes with which to populate the binary tree, accomplished by the procedures o r g a n  

and o r g a n h e l p e r .  The notes are semitones.

to organ -.base :fade 
make "wave synth
output organhelper (base * (1 / In 2)) :fade .-wave [] 0 

end

to organhelper :base :fade :wave :data :i 
local [ env note freq ]

make "env list [.9 25] lput :fade [0] 
make "freq (base * (power 2 i) * (In 2)) 
if less? 2048 freq [ output data ]

make "env list freq env
make "note lput env [soundwt :wave]
make "note list freq note

make "data fput note data 
make "i i + 1/12

output organhelper base fade wave data i

end

These procedures require two arguments. The first is a base frequency, which in fact 

will be the lowest frequency. The second, a fade, describes the duration o f the note’s decay 

in milliseconds. The procedures’ names are chosen to reflect the timbrel quality o f the wave 

produced by s y n th .  Therefore, a call to o r g a n  will return a list from the base frequency 

up to, in this rendering, 2048 in halftone steps. The list still isn’t a tree; it needs to be sorted 

and then rearranged into a balanced binary tree. I ’ve already discussed Harvey’s balanc

ing procedures, named b t r e e  and b t r e e h e l p e r  in AlphabetSynth. Harvey, however,
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started with a hardcoded sorted list of area codes. AlphabetSynth includes a sorting proce

dure, s o r t ,  that is based on the well known qsort algorithm and is not further discussed 

here. Additionally, a Lisp-like c o n s  procedure is given for concatenating two lists. While, 

it’s trivial to implement, its ubiquity across most functional languages makes its absence as 

a primitive in UCB Logo surprising.

So to summarize, thus far w e’ve covered the following functionality:

•  creation o f an array wavetable to use as the base timbre

•  procedures that will create a list o f LogoRhythms sound generating commands where 

each element is associated with a frequency on a 12 tone, semitone scale

•  a procedure that sorts the list of commands by base frequency

•  procedures- borrowed from Brian Harvey with some modification- that create a 

(fairly) balanced binary tree using a sorted list as input

Now, let’s turn to the user-interface starting with the user and working back into the 

system and the binary tree data structure. The user is sitting at their computer. They will 

tap a key and get a tone, ie. there’s a one to one mapping between pressing a key and a 

note. Some o f the functionality will turn out to be generic for any possible synthesizer 

trees we create for the AlphabetSynth while some will be specific to this first tree, the

list o f semitone organ sounds. These two functionalities will be broken into two separate

functions with generic functions being placed in a procedure named s t a r t s y n t h .  Organ 

specific functions will go into a procedure named o r g a n k e y s .

to organkeys :base
make "base first :list.synth
make "base base * (1 / In 2)
make "c ascii readchar
output (base * (power 2 (:c - 97)/12) * (In 2)) 

end

This procedure uses Logo’s r e a d c h a r  procedure to handle the keyboard input. The 

character is converted to its ascii code and this code is offset such that the character ’a ’ 

becomes the number 1, ’b ’ is 2, ’c ’ is 3, etc.... These codes can then be used to calculate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

3.1 Extending Harvey’s Programming Primer 34

a frequency. O rg a n k e y s  then returns the frequency to the calling procedure to subse

quently be used to lookup up the audio command in the binary tree. Here’s a stripped down 

version o f  the procedure where the lookup will occur. Again, in Appendix A, one will find 

a more feature rich version that will be discussed later.

to startsynth :func.synth :list.synth :func.getkey :list.getkey 
local [ freq cmd b ]

make "cmd [ ]
make "b btree sort (apply :func.synth :list.synth) 

forever [
make "key apply :func.getkey :list.getkey 
make "cmd last lookup :key b 
run cmd

]

end

S t a r t s y n t h  is designed very much like the examples in the last chapter. The ar

guments to s t a r t s y n t h  are templates, aka anonymous functions or instruction lists. 

Specifically, : f u n c . s y n t h  and : 1 i s t . s y n t h  will be the function and its arguments 

respectively that generate the list o f synth timbres at different frequencies- in this example 

o r g a n  while : f u n c . g e t k e y  and : l i s t . g e t k e y  is the function and its arguments 

respectively that map keyboard keys to lookup “keys” used to find commands in the bi

nary tree. S t a r t s y n t h  uses the former to generate the binary tree. Next, it enters into 

an infinite loop using Logo’s f o r e v e r  procedure (all control structures are in fact pro

cedures that take an instruction list as an argument). Keyboard strokes are read, mapped 

using : f u n c  . g e t k e y  template, queried for in the binary tree using lo o k u p  and finally 

the returned synth instruction list executed using Logo’s r u n  procedure.

And what does this all look like on the Logo interpreter command prompt?
? startsynth [organ ?1 ?2] [220 128] [organkeys ?] [220]

Remember that the ’? ’ character marks the parameter slot in the template. In the case 

o f  o r g a n ,  ? l  is the first parameter that maps to 220Hz and ?2 to the decay parameter 

mapping to 128ms.
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Every instrument has its limitations and this one’s no different. UCB Logo doesn’t cur

rently offer any threading mechanism. LogoRhythms introduces a basic thread procedure 

on Linux/Unix platforms. Threads, however, are not used in these examples. Each instruc

tion list blocks the execution o f subsequent instruction lists. Therefore, notes cannot be 

played concurrently. Additionally, the length o f each so u n d w t is fixed. If  the duration 

between two consecutively played notes is less than the duration o f the note itself, the mu

sician will experience a delay between their input and the feedback o f sound- an upsetting 

o f the one-to-one correspondence between action and reaction.

Up to this point, I haven’t mentioned the lookup procedure for retrieving commands 

from the binary tree. Searching binary trees is similarly covered in many other sources 

including Harvey’s example upon which AlphabetSynth builds. However, the code pre

sented below for searching the tree does in fact deviate significantly from Harvey’s. First, 

a number o f simple query and predicate procedures have been created such as isleaf?, 
getLessBranch and getMoreBranch essentially as context appropriate aliases for 

basic list manipulation functions like first. But the bulk o f the work is performed in

lookup and lookuphelper.
to lookup :code :tree

output lookuphelper :code :tree tl 
end

to lookuphelper :code :btree :closest 
local [ next less more ]

make "this getNodeKey :btree

if empty? :closest [ make "closest getNode :btree ] 
if equal? :code :this [ output getNode :btree ] 
if isleaf? :btree [ output closest ]

ifelse less? :code :this [
test empty? getlessbranch :btree 
iffalse [

make "less getNodeKey getLessBranch :btree 
if updateclosest? :code :less first closest [ 

make "closest getNode getLessBranch :btree
]
test isleaf? getLessBranch :btree
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iffalse [
make "closest lookuphelper :code getLessBranch :btree :closest

]
]

] [
test empty? getmorebranch :btree
iffalse [

make "more getNodeKey getMoreBranch :btree 
if updateclosest? :code :more first closest [ 

make "closest getNode getMoreBranch :btree
]
test isleaf? getMoreBranch :btree 
iffalse [

make "closest lookuphelper :code getMoreBranch :btree : closest
]

]
]

output closest 
end

I wish to make two comments about these procedures. First, while the strategy for 

searching the tree is norm al- start at the root node and follow the branches left or right 

as necessary until a match is found- if no exact match is found l o o k u p h e l p e r  will 

traverse the tree until it reaches a leaf. It will then return the closest match it has found 

in that traversal. In this way a given query is always guaranteed to return a command 

and, subsequently, a sound. Secondly, this is a subtly complicated procedure to debug 

and understand. The code contains ten different conditionals nested three levels deep. 

Furthermore, even short trees are hard to visualize as the lists they really are. Printing 

the list to screen is o f marginal utility when a closing statement may contain five adjacent 

parenthesis. Here’s how UCB Logo prints the binary tree for the first synth presented:

You don't say what to do with [[659.255113825739 [soundwt :wave
659.255113825739 [ ]]]] [[369.994422711634 [soundwt :wave

..]]] [[277.182630976872 [............]] [[........ ] [...

879

.] I...]] [[....... ] [............ ] [...]]] [[493
 ] ]  t [  1 [  ] [ . . . ] ]  [ [ •  - • •
.] [-.-]]]] [[1174.65907166963 [soundwt :wave [.
999999999999 [. . .  ] ] [ [ ] [.......
...] [............ ] [...]]] [[1567.981743927 [...
• • • ] [   • ■ • 1 [ . . . ] ]  [ [  ] [ ...................

883301256124 
] [■ • •

. . . ] ] ]
. ]  [ . . . ] ]
 ] ]

[ . . . ] ] ] ] ]
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No matter how much syntactic sugar we might mix into the LogoRhythms batter, this 

can be a hard function to debug. I took several hours to untwine the competing errors o f 

several different syntax/logic errors, the output o f each confounding my understanding and 

revealing o f the others (of course, I used a much simpler tree as test data in the debugging 

process). This admission is made to temper expectations as I merrily proceed along ad

vocating Logo and LogoRhythms to neophyte programmers. Lookuphelper demands 

concentration. A nice language may make it easier for a neophyte programmer to learn, but 

that doesn’t always equate to it being trivial to learn. In my case, I had solid conceptual un

derstanding of the algorithm’s mechanism and was still left wrestling with implementation 

longer than I wished. Furthermore, the same mechanisms that allow very terse and clean 

code, particularly anonymous functions and recursion, can also make for some very dense 

and obfuscate constructions.

3.1.2 Hash Tables and FFTs with SampleSynth

Building on the idea o f the AlphabetSynth, let’s create another synth, SampleSynth. Sam

pleSynth also uses the keyboard as the interface for playing a sound. Instead o f using syn

thesizer tones generated by adding together wave forms, each key will be associated with 

a sample of recorded music. In general, LogoRhythms is designed to emphasize work

ing with simple mathematical waves like sinewaves and squarewaves and the idea that, 

combined with envelopes, these simple building blocks can become any sound, at least in 

theory. Here, however, samples o f recorded music are used to demonstrate what has been 

called, computer audition, ie. using the computer to hear the sound. More precisely, the 

computer is used to analyze the sound. In addition to changing the source o f the sound 

from a synthesizer to samples, a different data structure is introduced for organizing the 

sounds. The binary tree is replaced with a hash look-up table, discussed further below.

First, we’ll need some samples, at least twenty six or so to cover the alphabetic keys. 

We could use twenty six different songs, but this approach creates a stylistic problem, 

that a whole song is a very long and varied note, as well as a technical problem, that Lo-
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goRhythms stores the data as uncompressed data. Each array o f  floats uses a considerable 

amount o f memory. To create more abstract snippets and avoid any memory shortages, 

SampleSynth uses very short samples o f a quarter second. Also, for the purpose o f the 

example o f computer audition, it will be helpful if  the samples sound different, particularly 

in pitch. I ’ve selected two pieces of music, Permiteme sung by Celia Cruz and J.S. Bach’s 

Toccata and Fugue in D  Minor.

The actual chopping and separating o f the longer audio files permiteme.au and Toc- 

cataandFugueinDMinor.au is done by the audio format manipulation program sox, com

monly found on many unix-like platforms including OSX and is not part of LogoRhythms. 

Calls to sox can be run via a shell script where 250ms are cut from the audio file along 

every five seconds o f its length.

#!/bin/bash
for ( {i = 0 ; i< = 100; i + = 5)) ; 
do

echo \${i} ;
sox permiteme.au celia\${i}.au trim \${i} 0.25 
sox ToccataandFugueinDMinor.au bach\${i}.au trim \${i } 0.25 

done

Each sample, or snippet, is written into a new .au file bearing the name celia__.au or 

bach__.au where __ is a number indicating where the snippet was clipped in the original file. 

With these snippets prepared, it’s time to move back to Logo code. The full code for this 

example is included with LogoRhythms in the files samplesdb.lg. The next task is to get 

the filenames o f the snippets into a list. It’s not impossible to read a directory’s contents in 

UCB Logo, but it’s done using the SHELL procedure such as m ake ' ' f i l e s  s h e l l  

' ' I s  which uses a unix specific command I s  to list the file names. To make life simpler, 

albeit less elegant or flexible, the snippet file names are hardcoded into the example file 

samplesdb.lg and stored in a list named f i l e s .

make "files fput "samples/celia5.au files
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make "files fput "samples/bach30.au files 
make "files fput "samples/bach95.au files 
make "files fput "samples/celia60.au files

In the Samples DB, each keystroke will play one sample. But which sample to play? 

And how to associate a given sample with a given key? We’ll need to know something 

about the sound that is the snippet. W hat sort o f attributes can we use when talking about 

these snippets? We could use length. But, the snippets have all been chopped to 250ms. 

We might say that some o f the snippets sound like classical organ music and the other 

set like salsa. We might note that some o f the snippets have a higher tone or pitch that 

others. It is in fact these two descriptions that interests us in building the Samples DB. 

W hat sort o f  instrument is being played and what is the predominate pitch o f the sample? 

Ideally both of these question with an answer that can be expressed numerically. In the 

AlphabetSynth we knew what the fundamental frequency o f each note because we created 

the note around that frequency, it then being used to organize the notes within the binary 

tree. The instrumentation, or timbre, and the pitches o f the Cruz and Bach samples are a 

complex mix o f frequencies. SampleSynth will work in reverse from the approach used in 

AlphabetSynth and instead start with the sound in the sample, then identifying a dominant 

frequency with which to label it. To summarize:

1. identify all o f  the frequencies associated with a snippet

2. select a single frequency from this frequency fingerprint that stands out

3. use the dominant, stand-out frequency to index the snippet in a hash look-up table

Here is the code that first runs when the the Samples DB is started:

print [making calculations]
make "db sort measurefrequency getaudiodata files 
make "db listtoarray db

print [enter a key a to z]
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forever [
make "key ascii readchar

make "key hashfunc key count db 
playwave last item key db

]

The first three lines create the database o f  snippets. The rest o f  the program is an end

less loop that takes input from the keyboard, looks up the associated sound snippet and then 

plays the sound. The most exciting action, as far as mathematically describing the sound, 

starts in the procedure m e a s u r e f  r e q u e n c y .

to measurefrequency :audio 
local [ peak ]

if empty? audio [ output [} ]

make "s fft first audio
make "peak peakdetector spectrum s

output fput (list peak first audio) measurefrequency butfirst audio 

end

This procedure takes the audio snippet as an argument and then applies LogoRhythms’s 

FFT procedure, a fast fourier transform. The transform that occurs is from time domain 

to frequency domain. In the time domain, each sample is associated with an amplitude, 

ie. volume. How much, how loud, is the sound at a given point in time? In the frequency 

domain, our data can now tell us what frequencies are present and at what intensities at a 

given window of time, an admittedly abstract notion since frequency requires time. So in 

reality, it’s frequencies over a sliding window in time. If  one plays the wave array returned 

by an fft, it will probably sound like a lot o f static. LogoRhythms also provides an IF F T  

procedure, inverse fast fourier transform, that will return the frequency domain data to 

time domain data, sounding as expected when played through the speakers. While the fft 

accomplishes the transformation, the result is a complex number. It would be easier to 

think of the data in terms of how much of each frequency is represented and to think of
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those frequencies in terms o f cycles per unit time such as hertz, the same unit used for 

arguments to procedures such as SINEWAVE. LogoRhythms provides a Logo library level 

procedure called SPECTRUM that makes the conversion to the magnitude o f frequencies in 

the samples expressed in hertz.

Finally, with the spectrum o f frequencies in hand as the output o f the SPECTRUM pro

cedure, a single dominant frequency is found using the SampleSynth’s p e a k d e t e c t o r  

procedure. The peak detection strategy simply scans the data looking for the tallest peak. 

One slight twist, however, is to not simply look for the tallest single sample, but bin con

secutive samples, done in the procedure g e tw in d o w v a lu e  and then measure the tallest 

bin. In this way, one can get a rough measurement not just o f the height o f a peak, but also 

its width.

With the spectral analysis complete and a single frequency identified to characterize 

each audio snippet, it’s time to get to the business o f organizing the snippets in a searchable 

data structure, in this case a hash table.

A hash table is a data structure, usually an array, where the location o f a given piece of 

data, say a number or some text, is related to the content of data. For instance, imagine an 

array o f length 10 that will hold the numbers 1 through 10. So that we will immediately 

know where the number 5 is located, it will always be placed in the fifth index o f the array. 

O f course, this means that only one instance o f the number five may be stored. A slightly 

more complicated hash table might be built to hold the letters A-Z where A will always 

be in the first index, B in the second, C in the third and so on. This is also the case in 

SampleSynth. The fft is performed with the data in a Logo list. The code m ake " db  

l i s t t o a r r a y  db  converts the list o f snippets and the dominant frequencies used for 

their labels into an array where members can be found with a numeric index. To find the 

specific index, a hashing function is used. In the general case, the input o f the hashing 

function may be a number, a reference or text. For instance a well known hashing function 

returns the sum of ascii values for the characters in a string modulus the number of indices 

in the hash table. The key calculated from this function will be unique and normalized to
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the size o f the array holding the key’s values.

The hashing function used here is even simpler. First the array holding the snippets is 

sorted by the value o f its peak frequency. When the user types a key, SampleSynth obtains 

the ascii value, a numeric value associated with a character, for instance an “a” has an ascii 

value o f 97. This value is brought into range o f the array indices by subtracting 96. The

result is the array index holding the sample to be played. Here’s that explanation expressed

in Logo:

to hashfunc :key :length 
local [ idx ] 
make "idx 1

if less? 96 key [ make "idx key - 96 ]

;; keep in bounds
if less? length idx [ make "idx length - 1 ]
if less? idx 1 [ make "idx 1 ]

output idx 
end

Finally, once the snippet has been returned from from the hash table it is played with 

the p la y w a v e  procedure. Afterall, it is just a wave array o f sound data.

To summarize, this chapter has attempted to introduce two important data structure and 

indexing-searching strategies widely used in computer science by presenting them in audio 

applications build using LogoRhythms. The algorithmic topics take their context in two 

different computer instruments, each using the computer keyboard to allow the musician to 

actuate the sound.

AlphaSynth generates a tone based on a desired fundamental frequency. In other words, 

one decides what pitch the tone will have and then embellishes color around that pitch 

with varying combinations o f harmonics, partials and wave types like sinusoids or triangle 

waves. The Samples DB works the other direction. Audio snippets are harvested from pre

recorded music. Using LogoRhythms’s FFT and SPECTRUM procedures a peak frequency 

is associated with the snippet to be used as a lookup key in a hash table.

While one might be tempted to proclaim, ’Voila!,’ LogoRhythms is not intended to be a
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final solution to anything. For sure, there are far better synthesizers available if one’s only 

goal is performance. LogoRhythms is a user-friendly computing language. Compared to a 

sound editor application, it can provide a low level entrance into application writing. Hav

ing a language is not enough! Dissatisfaction and a drive to tamper, a curiosity to dissect 

and rearrange are also necessary. For starters, AlphaSynth and SampleDB can be tuned, 

just like a musical instrument. One new to Logo, LogoRhythms or computer program

ming might start by changing the synthesizer in AlphaSynth, for instance with a different 

combination o f waves added together in the s y n th .  While a student-programmer may be 

interested in extending the instruments, the data structures and algorithms transcend the 

musical application presented here. The programs could be modified to fit other purposes 

such as the exciting task o f indexing telephone numbers by area code, as suggested by 

Harvey. Reuse and modification is key in the work-day aspect o f software engineering and 

problem solving with computer applications. In that sense, the ability to modify, dissect, 

break and extend provides a strong argument for open source frameworks in educational 

computing. Learning something that’s hidden from view with intellectual property miser

liness and the intent that others cannot learn it or copy it should be regarded as anathema.

W hether with Logo or any other handy language, go forth, break and create.
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Chapter 4

Evolution and Obfuscation:

A Case for Studying Antiques, Bicycles 

and Programming Languages

4.1 Introduction

Donald A. Norman, frequent contributer to the computer-human interaction literature and 

former Apple Fellow, states that “good design” can be boiled down to four principles: (1) 

visibility, (2) a good conceptual model, (3) good mappings and (4) feedback. The principles 

are enumerated, along with seven measures for achieving them, on page fifty two o f The 

Design o f  Everyday Things [14].1 And yet on page one hundred and eighty five, Norman 

describes an ideal computer of the future as “invisible.”

The point cannot be overstressed: make the computer system invisible[14].

The following essay will tackle this contradiction, suggesting a resolution by way of

another design principal not on Norman’s list: transparency. Here, transparency refers to

the revealing o f mechanical causality through design considerations. Transparent design

1The seven measures: “Tell what actions are possible”, “Tell i f  system is in desired state”, “Determine 

mapping from intention to physical movement”, “Perform the action”, “Determine mapping from system  

state to interpretation”, “Tell what state the system is in” and “Determine the function o f  the device”.
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may also strive to allow better access to historical antecedents, remnants o f design giving 

insight into an artifact’s evolution.

4.2 Mechanical Transparency on Large and Tiny Machines

Norman argues that it was the task that needed to be visible, not the machinery. He 

creates two categories for interacting with the computer, “command mode” and “direct- 

manipulation mode.” Command languages are an example o f command mode. Direct- 

manipulation mode includes, for example, video games, spreadsheets and text editors. Hav

ing indulged in this categorizing, Norman immediately goes on to make some paradoxical 

claims about direct-manipulation mode.

But direct manipulation, first person systems have their drawbacks. Although 

they are often easy to use, fun and entertaining, it is often difficult to do a really 

good job with them. They require the user to do the task directly, and the user 

may not be very good at it. Colored pencils and musical instruments are good 

examples o f direct manipulation systems. But I, for one, am not a good artist 

or musician. W hen I want good art or music, I need professional assistance.

So, too, with many direct manipulation computer systems.

Are direct manipulation devices, including applications, “fun and easy” or “difficult?” 

Perhaps both, rendering the categorization far less helpful in the search for an ideal. Nor

man suggests that such interfaces may require professional assistance. Yet, this is the mode 

o f spreadsheets, word processors and video games. More typically it is command mode 

and esoteric languages that have fallen to the purview of professional syntactic stunt peo

ple. Musical instruments are given as an example of a direct-manipulation, domain o f the 

professional device. The computer is a musical instrument and electronic music can be 

programmed using command languages, the essential command mode.

Justifying Norman’s logic is less fruitful than the observation that there really isn’t so 

much difference between these modes as Norman might want us to believe. If  musical
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instruments are direct-manipulation devices and computers are musical instruments that 

can be played via command mode, perhaps command mode should really be considered a 

direct manipulation mode? Norman’s copout o f this paradox? Make the computer invisible, 

reduce it to nothing more than a platform for heavily constrained task specific tools, remove 

programmability and flexibility, diet away the challenge o f  learning the tool but in the 

process loose the rich fat o f adaptability to specific problems and alienate the end-user 

from the underlying mechanisms by which the machine operates.

Making the computer invisible begs the question o f confusion since the units of com

putation, bits, bytes, logic gates, etc... are so small that they’re already impossible to see. 

The outer perimeters o f computers may become extremely, even conveniently, small. But 

it’s also likely that their inside space continues to become larger and larger as more and 

more memory is squeezed onto chips, or at least not shrink from the spaciousness already 

attained. And hence a significant dilemma o f  computer-human interaction, whether com

mand language based, Wysiwyg point and click or some synergism o f the two, is that most 

o f what’s in the computer will not fit on the screen during a single moment. In comparison, 

most musical instruments are visible... and audible. Musical instruments provide ample 

feedback including haptic. They generally provide a magical and direct relationship be

tween the visible, audible and haptic. Electronic music, unsurprisingly, easily violates this 

relationship visually, the strings too small to be seen.

A bicycle is an excellent subject for questions.

So wrote Jean Piaget in The Child’s Conception o f Physical Causality[ 15]. The famed 

psychologist was contemplating how we people come to build our mental models explain

ing mechanistic causality, in this case how a bicycle works. And, the reason a bicycle is so 

excellent?

All the pieces o f this mechanism are visible.
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Piaget and Norman would seem to agree that visibility is an aid in the understanding 

o f causal mechanisms.2 For Piaget, the visibility o f the mechanics made for experimental 

convenience. Piaget reasoned that all adults can name the key components o f a bicycle 

(wheels, chain, handlebar, etc...) circa 1930 and describe the role they play in the bicycle’s 

movement. In fact Piaget put the age at which the causal roles are obvious at around 8 

years old, at least for the French boys with whom he worked[15].3 However, his interest 

was in tracing the development o f such intuitive obviousness. Visibility alone apparently 

is not enough early in a child’s development. His four year old subjects could see and 

even name the parts o f a bicycle. Yet, their causal explanations for movement fall short, 

eg. there are motors in the spokes or currents o f air or water inside the tires propelling the 

bicycle forward. Still implicitly, the experiment supports the importance o f visibility in un

derstanding a design and more so demonstrates that some developmental change, which I ’ll 

just simply call “experience,” actually leads to elimination o f mysterious, hidden causality, 

such as a stiff breeze inside the tires. 4 The shape and movement of controls should map 

clearly to their functions, eg. turn the handlebar right and the bike turns right, mechanical 

causalisty reflected in the design. Norman would seem to agree with such logic, particu

larly in the design o f doorknobs and sink faucets, favorite crusades of his, but less so with 

the computer.

Is a piano easy or difficult to play? It’s almost immediately obvious how to get sound 

out o f a piano via the keyboard, but it can require decades o f practice before Carnegie Hall 

stands in ovation. Or, as a different measure, I cannot match via the piano the complexity 

with which I can hum, whistle or hear music in my head, beit a recording of another piano

2’Accessibility’ is probably a suitable synonym for visibility here. The important essence o f  visibility

being accessibility to the senses, ie. in apposition to invisible, hidden, unknown.
3Piaget suggested the age for girls was later as they had less interest in bicycles. I’m suspicious that such

a claim would be bom out with the young daughters o f  my cycling fanatic friends.
4Piaget suggests that at some early age no amount o f  patient parental explication, like cutting open a

spoke, will suffice as the mind’s just not ready. So perhaps the question is what role does experience play in 

coming to solve the mystery... the old nature vs. nurture silliness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4.2 Mechanical Transparency on Large and Tiny Machines 48

player or a simple day dream improvisation. The instrument demonstrates easy access (low 

floor) without prematurely stifling room to grow (high ceiling). With nominal training, 

thirty minutes perhaps, one can learn enough to reproduce the simple 2-5-4 or 1-4-5 chord 

progressions characteristic o f much pop music- pianos are used successfully in a wide 

variety o f artistic applications ranging from simple chords to concurrent playing o f bass 

lines, chords and melodies by a single player. Beyond the question o f  playability and 

my own lackluster tickling o f the ivories, I feel comfortable in describing how a piano 

produces a sound via levers, hammers and strings. A cursory glance inside an open grand 

piano reveals the basic mechanisms. With an open face plucked string instrument such 

as a guitar, I may even be able to visualize the nodes on the string corresponding to the 

harmonics o f its base frequency. These instruments may not quickly avail their users to 

succeed in a certain musical task, but their mechanistic causality is not elusive in its main 

components, a qualifier added in recognition o f less obvious nuances: dryness o f the wood, 

interaction o f two concurrent tones, and the infinitum o f complex systems. When I first saw 

a gamelan as a teenager, I essentially had instantaneous understanding o f  its mechanistic 

causality, enough so to “play” notes even though I will not be joining a Balinese orchestra 

anytime soon.

Making a design analogy between the physical mechanism o f a computer such as the 

electric charges on doped silicon and the circuit layout of logic gates to a bicycle or a musi

cal instrument would be quite difficult if  based on visibility. One could build the computer 

to a very large scale, say where each circuit is a few millimeters wide. O f course, such a 

computer might be so large that the big picture would extend off the horizon. Engineer

ing efforts have mostly been striving for the opposite transformation in size like reducing 

one bit o f information to something the size o f a single proton- a bit encoded by the spin 

direction o f the particle. A second approach might employ a sort o f microscope. A micro

scope, similar to the fantastically large computer, would improve local detail but again at 

the expense o f the bigger picture. Still this could be an improvement o f sorts. The com

puter works on patterns and much o f the size o f a circuit’s design results from redundancy,
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eg. holding many bits o f data. Revealing a single piano string provides a correct starting 

model as to how each string will operate. Revealing two strings will suggest a relation of 

string diameter to pitch, wider strings producing lower tones- a revelation reminiscent of 

induction.

While the boards, buses and chips o f today’s computers are still visible, computation 

already occurs at an invisible level. The sensibilities o f intuition are deprived o f their old 

crutch, eye-level seeing. Magic and the unexplainable waft from the miracle o f miniatur

ization and its elusive mechanisms, like the motors in the bicycle spokes of Piaget’s four 

year olds.

Most o f us use our sight sense when negotiating the computer. The commonest user- 

interfaces, command mode and Wysiwyg, depend on it. But the images have been trans

formed any number o f  unknown times between the chip and our retinas. Transformations 

similarly occur for auditory or haptic input-output. These transformations bridge mag

nitudes and coding schemes from binary electric charges to Latin alphabet glyphs. The 

tranformations’ designs define the mappings between mechanistic causality and the senses. 

Mapping and visibility, such as used by Norman, may provide thought provoking catego

rizations. But they aren’t strictly exclusive o f each other. I can watch somebody drive a car 

and the mapping between steering wheel turns and car turns will aid my understanding in 

use o f the device. Mapping is even more closely related to feeling, not necessarily haptic, 

ie. touch, but o f the act-and-react, experimentation kind as in “feeling one’s way through a 

problem.” Reach out and affect some inertia. How did the state o f  the system change?

Let’s say our interest is to understand the physical mechanisms o f the computer. Not 

such a strange desire. The semantic content on a disk is as firmly encoded by magnetic 

charge as ink set on paper. Tasks, like producing and reproducing electronic music, are 

physical and might be explained as a relationship o f physical mechanism. These mecha

nisms can be understood by appealing to intuition’s acceptance o f  causality, enumerations 

o f a sequence o f acceptable relationships. A widely used user-interface standard for affect

ing this physical mechanism is assembly code, a catchall for language that widely varies
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across hardware but in every case closely captures the changes that must occur at the level 

of the physical computer. Assembly code not only provides an interface for issuing changes 

to the physical machine on a one-to-one basis, but provides a nice outline of causal rela

tionships. Assembly code, more than other programming languages, satisfies the goal o f 

clear mappings through the transformations between the controls and the changes in the 

underlying device. Here is the assembly code for the program that adds one and one (1 + 

1) on my Intel machine as translated from a short program written in the C language.

.file "test.c"

. text

.globl main 

.type main,@function 

main:

pushl %ebp 

movl %esp, %ebp 

subl $8, %esp 

andl $-16, %esp 

movl $0, %eax 

subl %eax, %esp 

movl $2, -4(%ebp) 

movl $1, %eax 

leave 

ret 

.Lfel:

.size main,.Lfel-main

.ident "GCC: (GNU) 3.2.2 20030222 (Red Hat Linux 3.2.2-5)"

The mapping is clear. An instruction such as m ov l literally moves electrical charges 

from the memory at % esp to %ebp; the movement is as real as if  one had two piles o f
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oranges, moving the fruit between piles to count off arithmetic operations. The same pro

gram could be accomplished by the manual toggling o f physical switches. The program 

is readable, leveraging our expertise with the symbols o f a widely used natural language. 

Perhaps the mapping to physical mechanisms o f the computer doesn’t get any better than 

this. Mapping toward the natural language skills used outside o f computing does. The C 

program from which this assembly code was generated is given below. The C code more 

closely follows familiar algebraic notation, ie. a standard o f sorts introduced early to most 

primary school students.

int main() { 

int r ; 

r = 1 + 1; 

return 1;

}

What has been gained in the abstraction, the transformation between the assembly code 

and C code? The program is terse. More can be accomplished with less code. The pro

gram’s operation is clearer. What is lost? The cost is clarity o f mechanistic causality.

Programming languages may be regarded as the domain o f the highly trained, the pro

fessional, the guru. But they weren’t invented to benefit computers. Computers existed 

before programming languages and can operate fine without these levels o f indirection and 

abstraction. For instance, the Buchla is an early analog synthesizer where programs are cre

ated by patching together wave generators, amplifiers and filters using cables in the manner 

o f an old fashioned telephone switchboard, Figure 4.1. Text based, terminal readable pro

gramming languages make computers easier to use in a way that, by extension, increases 

their utility. Ease and utility exist in a precarious balance. A slice toaster is easier to use 

than a hibachi, but less versatile. With the invention of programming languages, little util

ity is lost. Translucency o f the mappings to mechanistic causality becomes cloudier, but 

everything the computer could previously do, it can still do. The increase in speed and
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Figure 4.1. The Programming Interface fo r  an Early Buchla Synthesizer
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flexibility when swapping or modifying the program, once done by some mechanism like 

changing the Buchla’s patch cables, has generally outweighed the loss of contact with un

derlying mechanism. Besides, anyone capable o f programming in a high level language 

such as C can probably understand the assembly code in short order.

But, the consideration that ease has a relation to utility is the first o f two major ingre

dients greasing the downhill spiral o f human-computer interaction. The second ingredient 

is well known, marketability. The bottom o f the pit? Computers that are as easy to use 

as any well designed doorknob... and about as useful.5 Programming languages presup

posed the proceeding software evolution o f desktop applications- the level o f indirection 

at which most o f us manipulate the computer most of the time.6 To use an application, it’s 

not only unnecessary to understand the physical mechanistic causality o f the rocks in the 

machine, it’s unnecessary to understand the programming language with which the appli

cation was written. The utility o f applications can almost go without saying and I neither 

wish to portray them as a petulance or plan to cease using them myself. I f  the task at hand 

is pulling up from the database the available seats on a flight to Montreal while you or I 

wait impatiently at a ticketing counter eight hours jet-lagged, twelve hours since the last 

real meal and twenty four hours since a shower that wasn’t served on a washcloth, the trans

parency o f logic gates and parse trees is pretty irrelevant. But, all these levels o f indirection 

add inconvenience to the gizmo curious- the individualist who enjoys disemboweling their 

lawnmower engine, dishwasher and stereo equipment. Manufacturers, most notably in the 

automobile industry, increasingly add hurdles to the do-it yourselfer in the forms of spe

cial diagnostic equipment and tools, diverting even simple jobs into service departments of 

their respective dealers. The indirection should annoy engineering and computer science 

students who, despite specializing in abstraction, must wade through innumerable lateral 

inventions before crossing core concepts while some parts remain forever invisible as ac-

5 Intelligent agents, ambient intelligence, intelligent environments come to mind, eg. a computer that turns

on and off the lights in my living room.
Programming languages are the interfaces to applications like compilers and assemblers, ie. applications

that enable other applications.
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cess to even the source o f the programming languages is denied in the name o f intellectual 

property, an odd scenario to place a student. What about the hapless ticketing agent look

ing for an explanation when the database query fails- times out, gives an error message 

or results known to be erroneous? Little engines in the spokes? Currents of air and wa

ter in the tires? Even if  there is nothing the agent can do, a likely and prudent scenario 

in a distributed, mission critical database application, they are denied the satisfaction of 

understanding. W hat’s at issue with the evolution from programming languages as the pri

mary application to secondary user applications is the trade o f flexibility for simplicity, the 

obfuscation o f physical causality.

And the group that should be most put out are the artists and scientists who in the course 

o f their explorations will need to push computers into areas not necessarily premeditated 

by distant application engineers. Like a furtive doorknob in a burning building, the lack of 

visibility o f the underlying mechanisms traps the end-user into accepting decisions made 

by the application designer. Scientists often find an out by simply learning to program, an 

endeavor more easily accomplished than gurus might like revealed. Numerous languages 

cater to scientific programming such as Octave, Matlab and, historically, Fortran while 

usually any language that can handle numbers at the limit o f the computer’s precision will 

work fine. The limit o f precision? This last constraint demonstrates the importance of better 

understanding o f the machine’s underlying mechanism leading to better u se- a computer 

cannot store any number, particularly large numbers or very small numbers such as the 

difference between two similar “medium” sized numbers, a perhaps surprising realization 

that results both from the physical design o f the circuits as well as the software. Artists 

may or may not learn to program or for a variety o f reasons including inaccessibility to 

foundation concepts, may explore glitch, ie. using a device for some purpose other than its 

designers intended [16] [17]. Tumtablism, the sampling and mixing from vinyl records on 

the fly, is analog glitch. Or, at least it was before the record player as instrument became 

so popular that records are pressed specifically for this purpose without the intention that 

they will never be played start to finish in a linear fashion. Blip and beep electronic music
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Figure 4.2. The wooden Laufmaschine from which the bicycle has descended

often resorts to glitch such as the intentional scaring of compact disks for the sake o f skips. 

Collage o f any sorts, audio or visual, might be thought o f as glitch, a recontextualization. 

Rube Goldberg’s cartoons and sculpture certainly employ glitch, as well as wildly complex 

but mechanistically satisfying design. Duct tape is more often than not employed in a 

special category of glitch known to engineers as “kludge,” performing service where it 

was not primarily intended and where a better solution exists, such as screws or glue. 

Transparent design hopes to fuel the same creative motivations driving glitch.

Glitch may often be bom of recontextualizing a technology in the absence in under

standing o f or alienation from its design principles. Hacking, in the older tradition o f the 

word implying something done clandestinely, is sometimes motivated by an alienation from 

the social structures that support the technology, for example unemployed engineers with

out inside access to modifying a system, up-and-coming students yet to receive an invite 

into the corporate fold and the otherwise disenfranchised[18].

Providing access to mechanical casaulity can enable that intellectual urge to understand 

and ease the process o f adapting, innovating and recontextualizing technological artifacts 

by engineers and artists as the artifact evolves.
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Figure 4.3. More moving parts- the mechanisms are still mostly exposed
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4.3 Historical Transparency

4.3.1 The Designer’s Access to the Turning Points of Ideas

For the moment, the state o f the art in computer usability, at least on desktop computers, is 

dominated by graphical user interfaces and Wysiwyg point-and-click environments. These 

environments were a long time in the making and during their early years, natural and pro

gramming languages held most o f the attention o f HCI conscious software efforts, Table 4.1 

[19]. Programming languages showed their early utility to humans and their productivity 

with their new computing machinery. Furthermore, through the fifties, sixties and most 

o f the seventies, text based computing suited hardware constraints like memory, process

ing and display limitations. Even tightly constrained applications where a user could only 

choose from one o f several options, it was likely that the choice would be submitted as a 

text based command, if  only a number. As the computer advocates tried to get the machines 

into more and more hands applying it to more and more tasks, users and programming lan

guages were pushed to find common meeting points. Languages would have to become 

still easier to use. Possible errors, often arising from misunderstandings of the invisible 

underlying physical mechanisms, would need to be removed. An infamous example is the 

memory management devices left in the C programming language, particularly memory 

allocation, deallocation and pointers. Late binding makes applications more flexible. Ini

tially runtime binding o f data to variables was an accomplishment, later late binding was 

extended to types. Some languages, such as Lisp, more or less hid types from the users 

altogether. But the user was going to have meet the challenge too. Computer luminaries 

such as Alan Perlis contended that programming could be a skill for everyone and that 

computer science would be a core discipline in the liberal arts curriculum [20].7 Computer

7”The writers have been preoccupied with the malaise o f  man adrift in a wealthy yet culturally oppressive 

society. Few have studied the real problem- man's decreasing range o f  influence, the rapid obsolescence o f  

his patiently acquired techniques, and the substitution by technology o f  vast numbers o f  trivial choices for the 

few really critical to his development. Man is not dehumanized or enslaved but he is in danger o f  becoming
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literacy was bom. And computer literacy was correctly recognized as an important skill 

to cultivate in light o f the impending ubiquity o f the machine. And why shy away from 

including this new curriculum as a liberal art and not stingily and solely the purview of the 

specialist? Most core concepts can be covered in a single semester, certainly enough to 

launch a student on the path o f writing programs that model and transform the problems 

in their respective fields. Computers have met the expectation o f  mass-market penetration, 

at least for the affluent, technological sectors. But has the ease o f  use accompanying icon 

based compuing come at the price o f technological literacy?

Obfuscation has accompanied software interface evolution. The underlying mecha

nisms, hardware and software, are often hidden from the devices built on top o f  them. Pro

gramming languages move to hide physical mechanism such as memory management. Ap

plications hide the idiom of the programming language with its keywords, elliptical syntax 

and unforgiving semantics- no matter how usefully flexible they may be. The evolutionary 

pressure is simplification, a tacit design philosophy that flexibility imbues unmasterable 

complexity. For added protection, simplification is accompanied by constraints, including 

the constraint that lower level building blocks should be unreachable.

As mechanical causality is hidden, so is historicity. Compare the images o f the lauf- 

maschine and the bicycle, Figure 4.2 [1] and Figure 4.3. While the laufmaschine lacks 

a drive train- the crank, pedals, gears and chain- the frame and wheels are present. As 

they are in the contemporary bicycle, available for analysis. Visible and easily inspected, a 

comparative anatomy of the two machines shows historical development as well as ideal

istic conservation. In the case of the computer, the elusiveness o f historicity and causality 

are linked in the chronology o f a development where older parts still exist, like the bicycle 

frame, as framework on which the newer parts are built. The newer parts, as already ar

gued, are by their nature often designed with the intention o f adding constraints and hiding 

complexity of the older parts,

irrelevent.” -  Alan J. Perlis ACM Address, 1963
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4.3.2 Early Themes in HCI

The study o f human-computer interaction, at least under the broader category o f human 

factors, has been around for nearly a half century, if  not longer. The IEEE published “IEEE 

Transactions on Systems, Man and Cybernetics,” generously leaving women out of that 

dubious formula, between 1988 and 1995. Previously, this publication’s topics had been 

partially captured in “IEEE Transactions on Man-machine Systems,” which had until 1967 

been known as “IEEE Transactions on Human Factors in Electronics,” which until 1973 

had been known as “IRE Transactions on Human Factors in Electronics,” which dates 

back to 1960. Many of the bread and butter themes of human-computer interaction are 

well represented even in those first issues. “Pattern Recognition and Display Characteris

tics” by W.R. Bush et al examines human performance on graphical displays, in this case 

radar screens [21]. “Computer Languages for Symbolic Manipulation” by Bert F Green Jr. 

underscores the importance o f programming languages to human use o f the new machin

ery [22], Accessibility opportunities are represented by H. Freiberger et al in “Reading 

Machines for the Blind” [23]. The potential for using natural language in the interface, 

alluded to earlier, shows up in Thomas Marill’s “Automatic Recognition of Speech” [24], 

A 33 year young Marvin Minsky submitted a lightly annotated bibliography on Artificial 

Intelligence, “A Selected Descriptor-Indexed Bibliography to Literature on Artificial In

telligence” [25]. The mouse may have still been some years off, but in the debut volume 

Richard L. Deininger examines “Desirable Push Button Characteristics” [26]. Even early 

echos of UML appear in “Operational Sequence Diagrams,” a lovely little article diagram

ming diagrams aiding visualization o f more efficient missile destruction, written by none 

other than Fred A. Brooks Jr, most famous for his book The Mythical Man Month [27][28], 

Many o f the components directly evolving into the modem graphical, Wysiwyg envi

ronment were well developed by 1981. Graphical applications should trace their history at 

least back to Ivan Sutherland’s Sketchpad application developed in 1963 during his PhD 

work at MIT [29]. Sketchpad used a lightpen to manipulate onscreen vector based draw

ings. In his introduction to the application, Sutherland proclaimed, “The Sketchpad system,
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by eliminating typed statements (except for legends) in favor o f line drawings, opens up a 

new area o f man-machine communication.” [29] O f course, Sutherland had to type quite 

a few statements into his TX-2 computer, a computer programmed in an operation code, 

ie. an assembly language. A few years later, William K. English, Douglas Englebert and 

Melvyn L. Berman of the Stanford Research Institute evaluated the newly invented mouse 

along with several other display-selection devices such as joysticks in a series o f challenges 

given to human users [30], The results were published in 1967 among the pages o f IEEE 

Transactions on Human Factors in Electronics,8 Perhaps most significant to contempo

rary windowing environments, Xerox PARC’s integrated IDE and programming language, 

Smalltalk, would feature overlapping windows by 1972. In 1981, Xerox would release the 

Star Workstation featuring WIMP (windows, icons, menus, pointers) Wysiwyg desktop. W, 

the precursor to the X Window System which is now the backbone o f most unix windowing 

desktops, would be written a year later at Stanford by Paul Asante and Brian Reid [31].

While these ideas were decades in the making, or in some cases, decades in the waiting 

for hardware powerful enough to support software concepts such as overlapping windows. 

The popular Apple Macintosh would not be released until 1984. Microsoft announced its 

windows desktop in 1983, but it wouldn’t be until Windows 3.0, released in 1990, that 

the environment would begin to eclipse the command-line idiom of D O S-1 still wrote my 

undergraduate papers in a DOS based word processor as late as 1994 as I found both Mac 

and Windows too slow for editing work.

4.3.3 Changing Fashions in HCI

The Association for Computing Machinery (ACM) has been hosting a conference on human- 

computing interaction since 1981, or as the ACM prefers, “Computer-Human Interaction,” 

CHI conference. The SIGCHI proceedings from the last quarter century provide an in

formative paper trail revealing the transition in interface paradigms. Computer literacy

8In a curious historical example o f  antique terminology, in English’s et al article the onscreen cursor is 

called a “bug” and the process o f  following its movement “bug tracking.”
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concomitantly changed; in some cases it picked up a new look such as visual programming 

languages while in others it seems to have been dumbed down in favor of idioms requiring 

less background knowledge and practice where context and constraints provide the usage 

guides to the user, albeit with loss o f flexibility. Either way, programming languages be

came less important, delegated to the domain o f the scribes and gums. SIGCHI papers such 

as the 1983 submission “What Do Novice Programmers Know about Recursion” or a 1986 

report “Does Programming Language Affect the Type o f Conceptual Bugs in Beginner’s 

Programs? A Comparison o f FPL and Pascal” increasingly gave way to papers like “An 

empirical comparison of pie vs. linear menus” [32],

A review o f paper titles, abstracts where available and, in some cases, the text body 

itself over the same 25 years of SIGCHI provides a suggestive trace of the change in com

puter literacy’s importance.9 In my review, themes have been binned into three categories: 

papers dealing with programming, papers dealing with graphic design issues and, since 

these topics aren’t mutually exclusive, papers dealing with both Table 4.1 [19]. I ’ve made 

the following interpretive stretches for the sake of better comparing computing environ

ment idioms. The programming theme includes papers on command-lines and command 

names while the graphic theme includes multimedia. The mixed category is a potpourri 

including veritable polemic ends o f the spectrum; some papers busied themselves with 

comparisons o f the two idioms, sometimes vitriolicly. Other papers more wisely sought 

synergisms in the approaches such as programming IDEs, visual programming languages 

and user-interface management systems. The categorizations are my own without benefit o f 

any set-in-stone standard or independent validation. However, to give better insight into my 

approach and, well, claim a modicum o f objectivity, Table 4.2, Table 4.3 and Table 4.41ist 

the themes o f each paper more specifically [19],

9The ACM SIGCHI conference formally came about in 1983. Prior to that it’s immediate antecedents 

were known as “ Proceedings o f the 1982 conference on Human factors in computing systems,” “ Proceedings 

o f  the joint conference on Easier and more productive use o f  computer systems” and “ Proceedings o f  the 

ACM/SIGGRAPH workshop on User-oriented design o f  interactive graphics systems” [19],
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Table 4.1. Comparison o f  Programming themed (P) and Graphic Design related (G) pa 

pers fo r  the first 15 years o f the ACM ’s CHI conference along with the most recent year. B 

are papers with both programming and graphic design themes.______

Year Total P B G

1981 79 4 (5%) 4 (5%) 2 (2%)

1982 75 13 (17%) 4 (5%) 7(9% )

1983 59 9(15% ) 3 (5%) 6 (10%)

1985 31 2 (6%) 3 (10%) 5 (16%)

1986 47 3 (6%) 3 (6%) 10(21%)

1987
i,

46 1 (2%) 4 (9%) 12 (26%)

1988 39 4 (10%) 3 (8%) 6 (15%)

1989 54 1 (2%) 8 (15%) 9 (17%)

1990 47 0 (0%) 11 (23%) 8 (17%)

1991 56 3 (5%) 6 (10%) 17(30%)

1992 67 2 (3%) 6 (9%) 30 (45%)

1993 70 0 (0%) 4 (6%) 15(21%)

1994 62 3 (5%) 8 (13%) 15(24%)

1995 60 2 (3%) 5 (8%) 17 (28%)

1996 55 1 (2%) 2 (4%) 19 (34%)

2005 93 1 (1%) 1 (1%) 17(18%)
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Table 4.2. Representative themes corresponding to Table I: 1980 - 1989

Examples o f Themes

1981 P error messages

B text editors, wysiwig modeling, IDE/shells

G visicalc & arcade games

1982 P indentation & documentation, lifecycles, functional specs

B typography, Basic & text editors

G menus

1983 P formal specs & Prolog, query languages, recursion, Pascal tutor

B commands & icons

G locating items on screen

1985 P abbreviating command lines, Basic

B comparison o f text & visual, toolkits

G widgets, Phong shading, spread sheets

1986 P Logo vs. Pascal debugging, semantics

B visual programming, visual vs. text debugging

G editing, medical cognitive graphics, windows

1987 P command names

B editing commands vs. graphic, data gloves & visual programming, Lisp & IDE

G antialiasing & visual performance, windowing, interactive b-splines, CAD, widgets, 

UIMS

1988 P command line histories, very simple languages, program comprehension in Pas

cal/Fortran, documentation

B visual programming with Lisp, command lines vs. direct manipulation, animating 

algorithms

G interface graphics, menus, oscilliscopes, voyage o f the mimi/educational multime

dia

1989 P command lines

B interactive graphics, example-based programming, IDE, UIMS, UIMS/Pascal, vi

sual programming, symbolic math

G toolkits, color, UIMS, modeling user interactions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4.3 Historical Transparency 64

Table 4.3. Representative themes corresponding to Table 1: 1990 -1996

Examples o f Themes

1990 P

B UIMS, layout algorithms, visual programming, visual Unix shell, Smalltalk

G widgets, menus, spreadsheets, multimedia navigation, buttons, animation to teach 

algebra

1991 P Pascal program comprehension, Unix commands

B usability for graphical programming, visual language parsers, Smalltalk, animated 

algorithms

G dynamic icons, animated 3d visualizations, spreadsheets, multimedia authoring

1992 P COBOL tutor & problem solving, OOD

B CAD, 3d design, GUI, UIMS, MAX/IRCAM

G multimedia, fisheye views, GUI, widgets, accessibility, CAL, database query wid

gets

1993 P Pascal & mental models, Logo media, aiding functions SPSS

B animated algorithms, demonstration programming/macros, UIMS, IDE, text vs. 

graphic queries, visual source code

G 3d interaction, stereoimages, GUI, menus, whiteboard style UI, internationalization

1994 P

B OOD, IDE, visual 0 0  programming, programmable design environment

G text vs. multimedia, GUI for the blind, piemenus, starfield displays, fisheye views, 

transparent tools, alphaslider

1995 P psychology o f programmers, command aliases

B user built widgets, demonstration programming/macros, UIMS, IDE/programmer 

behavior, Smalltalk/OOD

G GUI/online help, menus, tile bars, X Window for low vision, frontpanel for Unix

1996 P end-user programming of personal agents

B demonstration programming/macros, interface for math algorithms

G animation/user decisions, CAD, accessibility, PDA/interactive tv, hypertext in GUI, 

map interfaces, 3d & web, button bars, widgets on small screens, color models, 

transparent menus, 3d web browser, multimedia CAL
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Table 4.4. Representative themes corresponding to Table I: 2005

Examples of Themes

2005 P debugging & gender issues

B Logo Microworlds

G visual search behavior, menus, zooming scroll interfaces, window selection via eye 

tracking, text on mobile devices, snapping, vacuum widget, toolkits, cursor orienta

tion, thumbnails, fisheye, stencil widgets

The ACM SIGCHI papers reveal the anticlimactic punchline. Interest in programming 

languages as an HCI opportunity, at least to the preeminent SIGCHI community, was on 

the decline through the eighties and was all but a trickle after Apple and Microsoft had 

released the popular windowing environments. Graphic design was taking up the slack in 

interest. Explaining this trend is a resort to speculation. Perhaps these researchers were 

on the cutting edge, defining the new idioms that would shortly come to dominate the 

marketplace and office space. Or, perhaps they were just on the coattails o f market success, 

testing what had already been proven by consumer behavior- simple chasing o f  research 

monies. More likely it’s both, a mix o f Zeitgeist and self-fulfilling prophecies bom of 

sufficient hype. More clearly, programming languages did not go away. The new user- 

interaction solutions depended on programming languages. People still wrote code. But, 

those people would no longer be the masses or jpfs (just-plain-folks).

Another notion holding researchers’ interests before the coming of age o f graphics 

environments was the use of natural languages. A broad category, that includes making 

programming languages that behave more like the everyday language of person-to-person 

communications as well as computers that take their commands in the form of verbal in

structions. Not to forget that AT&T has made considerable contributions to computer tech

nology such as the C and C++ programming languages and, in part, Unix and that AT&T 

has long been in the business o f relaying voice communications. But the use o f natural 

languages is a logical interface choice given the proficiency almost everyone has with at
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least one. That graphical environments took the trophy over natural language processing 

for bringing the computer to a wider audience may be as simple as that the latter was just 

ahead of its time. The former was just easier to implement and even it had to wait more than 

a decade for hardware to catch-reup with the software to the point where users wouldn’t 

frustrate from the wait while the processor labored at redrawing windows . Graphics’s 

beating out o f natural language, beit as an aid to programming instructions or verbal com

mands, further reveals its irony when human graphical acumen is compared with language 

skills. Consider how many of your friends are even moderately accurate illustrators versus 

how many can construct a complete sentence. Recall a simple command-line instmction, 

for instance, how to list the file contents o f  a directory or how to copy a file. Let’s say 

you selected “cp,” the file copy command on Linux/Unix machines. The symbolic repre

sentation o f the letters “c” and “p,” to be fair, involves typography, a graphic design issue, 

and when entering the command into the keyboard, the font adds a huge constraint on the 

typography. Independent of this constraint, the glyphs “cp” maintain their meaning across 

a variety o f idiosyncratic reproductions. And, it’s easy to remember. Now, without look

ing, draw the icon for the desktop launcher o f your favorite web browser, word processor 

or other frequently used application. How close is it? Would it be understood by someone 

else as that icon if passed on a piece o f paper at lunch? The icon’s use relies on constraint. 

I recognize my mozilla and firefox icons, neither o f which I reproduced particularly well, 

in part because I also remember where on the tool bar I will find them.

This same experiment was conducted fall o f 2005 with a group o f eleven undergraduate 

students drawn from an introductory computer science class as well as an introductory 

computer music class.10 Students were given a blank piece o f paper and given the following 

two challenges:

•  As accurately as possible, draw a desktop application icon that you frequently, al

though not necessarily constraining the size

•  List any numbers you can think o f that a computer cannot represent

10University o f  Victoria Ethics Approval Protocol Number 05-250
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In some cases students were also asked to give the approximate number o f times the 

icon was used daily; all students were encouraged to draw a “frequently” used icon. O f 

course, determining “how accurate” a drawing might be is somewhat of a sloppy business. 

In this measurement, accuracy is measured by three criteria. First, is there an object missing 

from the icon? Second, is there an error in positioning, ie. an object drawn in front of a 

second object when it should be behind, z position determined by overlapping lines o f the 

two objects. Finally, is there a scale error when considering two objects, ie. one is smaller 

than the second when it should be larger. Each o f these criteria require that at least two 

objects be present. These errors are listed as I, II and III respectively in the results table, 

Table 4.5.

O f the eleven surveys evaluated", three included alphabetic glyphs: twice the V  of 

M S’s Internet Explorer application and once the ’W ’ of M S’s Word application. It would 

be interesting to have sat in on the meetings where these designs were agreed upon and 

hear the justifications. Here 1 can only speculate that Microsoft’s graphic designers were 

smartly capitalizing on the well known images o f alphabetic glyphs. The errors for the 

verifiable icons, ie. icons I could subsequently find for comparison, are given Table 4.5.

O f these eight samples, only one was without any o f the predefined errors, the applica

tion icon for MSN Messenger. Drawing errors were associated with the icons for Internet 

Explorer, Firefox web browser, MSN Messenger, iTunes, Putty and MS Word.

Certainly this small study doesn’t strive to answer cognitive questions o f recall or visual 

memory. In the desktop environment, it’s not required to draw the icons, merely select them 

from a line-up. But consider the results in comparison to typed commands. How often is 

the letter ’p ’ mistakenly drawn in mirror image as ’q?’ It’s unlikely that the frequency of 

error is anywhere near 7:8, particularly under constraint of the keyboard. Or, how often is 

the DOS file copy command ’copy’ given as ’opyc?’ The point here is that while it’s easy 

to have good enough recall o f  icons and all the student volunteers have no trouble finding

11 Some icons were not readily available as references when reviewing the surveys and hence are not used 

in the evaluation.
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Table 4.5. Occurrence o f  Errors in Student Drawings o f  Application Icons

ID Errors

I II III

11 X

10

9 X

7 X

6 X X

4 X

3 X X

1 X

and launching their applications, typed or written language is a very familiar idiom already 

widely used with accuracy by the computing population. While the value of illustration as 

a basic competency demanded of the population is very valid, its realization is probably no

easier than widespread understanding o f programming in structured typed-text languages.
12

A warm, sunny, midsummer Sunday afternoon provides excellent opportunity to pedal 

my mechanically transparent bicycle for a few hours. I am passed by dozens o f antique 

vehicles, the sort that only come out on such a day. Among the usual convoys o f 70s 

muscle cars, 60s convertibles and 50s landsharks are dozens o f cars dating back to the 20s 

and 30s. A few of these cars, the very ones that passed me today, were built ten to twenty

12The second question on this survey, what numbers can a computer not represent, was meant to gage the 

participants familiarity with the machine’s physical constraints. Two responses indicated there are no con

straints or none that he or she knew of. Two responses indicated very large numbers and three each believed 

the computer was incapable o f  handling irrational or complex numbers. Four responses gave other reasons 

including an inability to store or represent zero and another singling out Roman numbers. Independent o f  the 

validity o f  these responses, I thought it curious that nobody indicated the computer handled only a discrete 

set o f numbers o f  limited precision.
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years before the first programmable, Turing complete (or as close as possible on a machine 

o f finite memory) electronic computers such as the ENIAC, which went online in 1946. 

The ENIAC wasn’t able to store its programs internally, though the idea was out and about 

at the time, but rather was programmed like the Buchla synthesizer via a rewiring. Unlike 

the Buchla, the ENIAC was not capable o f cool concert performances to the delight of 

tripped-out groupies. At 27 tons it didn’t fold for transport. Stuck in one room, it slowly 

labored at its hawkish task o f calculating ballistic firing tables [33].

The computer awarded the distinction o f being the first computer capable o f internally 

storing a program was the EDS AC [33]. It’s designer and implementor, Maurice V. Wilkes 

was awarded the second Turing Award ever given by the ACM in 1967 and is still alive 

today. In fact, o f the first eleven recipients o f  this most prestigious award, six are still 

alive today in 2005. All eleven lived to see the release o f the Apple M acintosh in 1984. 

The first recipient, A.J. Perlis who won the award for work on programming languages and 

compilers and was quoted earlier as an advocate o f general inclusion of computer science in 

the liberal arts curriculum, died the same year Microsoft released the definitive 3.0 version 

o f its windowing system. Some of these recipients still hold academic positions and are 

publishing papers such as Harvard professor and 1976 Turing Award winner Michael Rabin 

who did early work on finite automata and nondeterministic machines and now researched 

cryptography.

Other players from this narrative also won Turing Awards. Ivan Sutherland o f Sketch

pad fame won in 1988. Douglas Englebert o f mouse fame won in 1997. Frederick P. 

Brooks, Jr o f efficient ballistic missile launch fame won in 1999, although not specifically 

for that work. Marvin Minsky (1969) and John McCarthy (1971) both had some direct 

historical influence on the development o f Logo programming language through their in

volvement in AI research at MIT and work on the Lisp language, the parenthetical parent 

o f Logo.

The Turing Award winners are key players in many o f the key technologies that define 

the computer machine we deal with today. And all but a few of them are younger than the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4.4 Literacy with Machines, Literacy of Machines 70

classic cars out trying to pass me during my bicycle sojourn. Beyond making the point 

that the novelty o f even old computer technologies isn’t particularly old, none o f these ear

lier pioneers have backgrounds in computer science such as exists in today’s universities, 

reified as departments and degree programs. O f the original eleven award winners over 

the first ten years, at least five received their final degree in mathematics, three in physics 

and one in political science. Indeed, Edsgar Dijkstra argued, to the consternation o f the 

software engineering proponents, that real computer science was simply a branch o f math

ematics in his rant, “The Cruelty o f Teaching Computer Science” [34]. What sort o f fruit 

educations in computer science will bare is simply a story that requires patience in its un

folding. However, these early luminaries’ training gave them accesses to very low level 

principles and a fuller picture of the machine, still naked in its mechanistic causality.

4.4 Literacy with Machines, Literacy of Machines

Presumably, with a field as new as computer science, many o f  these researchers saw their 

efforts as the incipient baby steps. “The best way to predict the future is to invent it,” said 

2003 Turing Award winner Alan Kay who in 2004 gave a keynote address to the Object- 

Oriented Programming, Systems, Languages and Application conference in Vancouver,BC 

titled “The computer revolution hasn’t happened yet.” Kay is likely most famous for his 

Smalltalk language written at Xerox PARC in the early 1970s along with help from col

leagues Dan Ingalls and Adele Goldberg among others. Kay’s vision reflects those of 

Perlis, Minsky and Papert in regarding computer science as a core curriculum o f general 

value to the population at large and that the population at large should have access to a 

level o f control o f the machine that employs its full flexibility for modeling, simulating and 

experimenting.

The ’’trick,” and I think that this is what liberal arts education is supposed to be 

about, is to get fluent and deep while building relationships with other fluent 

deep knowledge. Our society has lowered its aims so far that it is happy with
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’’increases in scores” without daring to inquire whether any important thresh

old has been crossed. Being able to read a warning on a pill bottle or write 

about a summer vacation is not literacy and our society should not treat it so. 

Literacy, for example is being able to fluently read and follow the 50 page ar

gument in Paine’s Common Sense and being able (and happy) to fluently write 

a critique or defense o f it. Another kind of 20th century literacy is being able 

to hear about a new fatal contagious incurable disease and instantly know that 

a disastrous exponential relationship holds and early action is o f the highest 

priority. Another kind o f literacy would take citizens to their personal comput

ers where they can fluently and without pain build a systems simulation o f  the 

disease to use as a comparison against further information. At the liberal arts 

level we would expect that connections between each o f  the fluencies would 

form truly powerful metaphors for considering ideas in light o f others.

Written in his essay, “An Early History o f Smalltalk,” Kay touches on some of these be

liefs motivating the design o f Smalltalk [35], Smalltalk, in addition to containing a design 

brilliance that makes it one o f the most influential pieces o f software on today’s desktops, 

contains numerous ironies. Smalltalk was one o f the first object-oriented language and 

still one o f the very few fully object-oriented languages, ie. even primitives like num

bers are objects. The inspiration for classes and objects came less from the familiar text 

book examples of car is to vehicle/bus is to vehicle or worker is to employee/boss is to 

employee examples as from the idea o f biological cells. Each cell is selfcontained with 

its own states and machinery for accomplishing given tasks, but cells’ designs are based 

on reusable and hierarchical patterns. The design reasoning was that such units would 

ease the sort o f modeling-programming tasks that literate 20th century citizens might find 

themselves doing. Object-oriented engineering has somehow slipped out of the hands of 

the masses, morphing into an industry o f specialists. Thick tomes on Design Patterns and 

Object-oriented Systems Engineering make up intermediate to upperlevel study for com

puter science students [36]. Companies hire special architects explicitly and solely tasked
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with identifying these structures o f programming language components- structures used 

less frequently in ad hoc modeling than inside megalithic applications run on IBM main

frame computers in out o f the way comers of heavy industries like freight shipping, a not 

unlikely environment to find IBM ’s Smalltalk-80 implementation.

But, Smalltalk was not simply a programming language. Among many novel features 

was its innovative IDE. The development environment that aided in the manipulation of 

the objects provides frameworks for the programmer to create classes from which those 

objects take their behaviors and did so in the context o f resizable, draggable, overlapping 

windows- one o f the earliest such environments and most clearly the model for today’s 

windowing systems.

In Smalltalk we find a synergism o f the programming, command mode approaches to 

interaction and the context aided, Wysiwyg, point and click graphical environment. Un

fortunately, what has been retained on the desktop computer over the years are the easiest 

to use components, the windowing environment. The implementation language itself hid

den from most end users. The part o f the equation demanding effort by the user has been 

dropped by the major vendors like Apple and Microsoft, mechanism again hidden away. 

In one way, Smalltalk added a level o f indirection between the program and the machinery 

below it. The language and its environment run on a virtual machine (vm), ie. the program 

instructions tell the vm what to do. The vm must then translate that to instructions affecting 

the underlying computer equipment, like reads on the disk drive. The drawback is further 

removal from mechanistic causality. One benefit is portability. However, Smalltalk makes 

up for this indirection with a different sort of transparency. The language and environment 

itself is written in Smalltalk and is accessible to the programmer-user via a class browser 

that shows both software design relations and the underlying logic code. In fact, program

ming is really just a process o f making extensions to the virtual machine. The code driving 

the virtual machine is not only open source, but it is conveniently organized. It’s available 

to view and a source for understanding the design and syntactical idiom of the language. 

The programming problem can be approached in either a constructionist or deconstruction
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ist direction. Building models is facilitated by modular components while deconstructing 

where the goal to understanding is, at least, a possibility via accessible source- a possibility 

that reciprocally aids in the construction process by providing patterns and explanations of 

the building blocks.

Kay provided a mechanism for those who wanted to “predict the future by inventing 

it” in allowing the dissection o f the present. If, metaphorically, the technologies and ideas 

encapsulated in their designs are viewed hierarchically, then like the physicists and electri

cal engineers o f the early and hence lower-level computer technology, innovation will be 

the option o f  those who access and take time to understand the building blocks and how 

they can be reconfigured, or the artist who recontextualizes by glitch. When constraints are 

defined by forced ignorance via a stinginess with the details, users may relegated to follow. 

Glitch provides additional sublimity in its subversiveness; it breaks the constraints. But 

with the exception o f trivial or highly prototypical artifacts, it’s not free from performance 

rigorousness- quoting out o f context may be the fear o f many writers, particularly those 

who touch sensitive topics and, perhaps because o f this, is rightly looked down upon as an 

intellectual faux pas. Using technology out o f context, like a chainsaw to trim a beard or 

duct tape to secure an airplane wing, demands a certain level o f responsibility on the part of 

the improvising inventor- a responsibility that, again, may be better met if  one understands 

the underlying units and their failing points, ie. even glitch can benefit from an ability to 

deconsruct to some arbitrary level without destruction.

4.5 Performance, Good Magic Tricks and Transparency

Earlier I touted the transparency o f mechanical causality in many musical instrument in

terfaces, such as a piano or guitar. Sound, as any radio will demonstrate, can be free o f 

visibly demonstrated. Just think o f the “distant sound” o f this or that “dancing down the 

twilit street.” The orchestra sitting in the pit at an opera or ballet defies visual analysis as 

does recorded music played back via compact disc or similar device [37]. Perhaps many
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o f us are indifferent to this slight o f hand with our focus on the results not the m eans- at 

least until we become interested in reproducing the results. Or, perhaps the disconnect from 

causality is less removed than this analogy suggests. We may be familiar with operatings 

o f  an orchestra from previous experience. Furthermore music has traditionally been filled 

with reference to human scale. The length o f a bowed tone has a relation to an arm; the 

attack, loudness and duration o f a horn to the size and force generating capacity o f a lung; 

a rapidly played sequence on the piano to movement o f the fingers and drums, back to the 

arms again- no matter how fast the roll, the arms remain a limiting factor. Our bodies may 

differ, but within the variance, proprioception provides an intimately known scale, a scale 

reflected in music.

Newer technologies offer other disconnects. Sampling and the collaging of samples via 

sound editors on laptops provides a cited example o f mechanistic disconnect [37]. In some 

genres, such as tumtabalism, cause and effect is still very much alive and delivered with 

considerable panache, sonically and visibly. While the cause o f each timbre and pitch of 

the samples has been lost in the immediate context, the dynamic impositions unique to the 

work are lavishly on display. Synthesizers may use familiar keyboard interfaces, capitaliz

ing on the familiarity to piano players, but the timbres generated are not so easily related 

to a source like piano strings. Laptop music often includes both approaches. The laptop 

may be used to synthesize new sounds or playback samples. With the audience probably 

familiar with both possibilities, the performer, busily typing away could just as easily be 

checking email as improvising live music. At a recent concert I attended, a band used 

a combination o f approaches including sampled music and live analog instruments, each 

musician playing numerous instruments, a process that sometimes involved setting the in

strument with a riff to loop until inactivated. The inclusion o f a vocal track was apparently 

one too many components for them to incorporate on the fly. So a prerecorded vocal track 

was unabashedly used without even the pretension o f lipsyncing. Beyond any value judg

ment on such a performance, the vocal track ended up dictating the tempo and key o f the 

music and lessened the opportunity for improvisational interpretation o f environment like
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audience enthusiasm, a distant trainhom or the hapless waiter who just spilled five pints 

o f  beer somewhere between the dancers and wallflowers. Motivations for attending a live 

performance may include many social factors only tangentially related to m usic- the warm 

chaotic crowd, flirtation, alcohol, etc ...- for which many ostensibly pay to see live music. 

The possibilities of being the rubes to precorded showmanship is disconcerting. Even with 

an accepting audience, as many laptop fans clearly must be and with music capable o f hold

ing its own with the listeners’ interest, performers are aware that the revealing o f cause and 

effect can enhance the satisfaction. Juggling flaming pins is that much better and I can’t 

recall a drum solo that became less exciting when a piece o f broken stick went flying across 

the stage. Magic amazes with its slight o f hand. But truly great tricks remain so even after 

their mechanism is revealed.

Visibility, a good conceptual model, mappings and feedback are solid notions to con

sider in design work. Mechanistic transparency, the accessibility the physical components 

o f causality, should be appended to that list. In an ideal design, mechanical causality and 

historicity are, if  not blatant and visible, at least findable, traceable and dissectable. While 

neither the machinery nor its history may be simple, loopholes in constraints liberates the 

user. Full flexibility o f the computer can be restored, the satisfaction o f  understanding 

redeemed and the opportunity to innovate made clear.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 5 

Flowers for Algorithm

5.1 Preface

Perhaps a lingering and nagging question remains: why slow oneself down with unneces

sary details o f  how a technology works? Afterall, isn’t that the definition o f  mired? The 

proceeding essay essentially boils down to an argument that there’s value in rolling one’s 

sleeves up and getting involved, making an attempt for an intellectual and visceral under

standing o f  these mass-produced, hightech artifacts. Roles fo r  intuition in understanding 

are discussed along with roles fo r  the senses in developing intuition- basically, making 

another philosophical case fo r  hands-on learning. In keeping with the previous theme, I 

advocate a design strategy fo r  common artifacts like computers that enables that sort o f  

direct involvement.

The essay, however, is not expository- its form, as with all essays, an important part o f  

its content.
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5.2 Essay

cell phone Bob 

in the cell phone mob 

talking madly to himself 

o f how he rolled out o f bed 

and landed straight on his head 

but hadn’t found the floor

It’s not untypical to start an essay with a quote from some notable, distinguished author. 

They may or not have worked within the discipline o f the ensuing text; noteworthy analo

gies from other disciplines portend to underscore the universality o f  the underlying pattern, 

the essence o f the proceeding topic. Quotables from thinkers long dead, preferably thou

sands of years dead, add gravity, the weight o f so much death, advice given from one as 

omnipotent as a ghost. The filter o f time has resulted in the impression that there were 

fewer, and subsequently loftier, thinkers in antiquity. The ancient quote provides the root 

node of a hierarchy upon which the novel argument will be based. Or, perhaps it simply 

demonstrates the insight o f the quoted, their ability to envision modernity from such a long 

way back into antiquity.

The use o f the quote is literally a literary collaging technique. Musicians are often said 

to “quote” when playing a bit o f borrowed melody, perhaps during an improvisation. This 

latter use o f “quote” is perhaps less similar to the quotation practiced in writing than sam

pling, such as done for a musical synthesizer or by a tape loop composer or tumtabilist- 

there’s no avoiding recontextualizing the quote, whether it’s used to reinforce an argument, 

provide counterpoint or launch into a refuting diatribe. There’s no avoiding borrowing 

some of the timbre o f the quote, using the color provided by the originator. It may provide 

historical evocation, a temporal transplanting. The sampler may highlight their splicing 

bravado through an improvement in the dynamics o f the original, otherwise cheeseball, 

recording. Art wishing to prove itself by magnitude o f emotional response may use unex
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pected juxtaposition o f quotes to create the uncanny or humorous- uncanny and humorous 

as in a sample off a scratchy vinyl recording used by the band Man or Astroman which 

I now quote, “in case of nuclear attack, the preservation of records is vital if this country 

is to maintain its economy and carry on its way of life” [38]. This essay starts with an 

original poem, unique to this essay. The first paragraph provides a brief critique o f essays 

that commence similarly but with a collaged bit o f  quoted text.

Quoting out o f context may be an error, malicious or glitch, ie. intentional recontextu- 

alizing. The author’s intended meaning may exist so contentiously or obscurely that little 

hope exists to find a usage agreeable to everyone. For instance, Friedrich Nietzsche’s writ

ing is one frequently cited and cited as being frequently cited out of context. Prudence 

suggests avoiding conjuring such a writer, but his ideas are presented so forcefully and 

eloquently many can’t resist. And how can we blame his fans and detractors from their 

errors when he himself employed a style that often included apposing comments within the 

same passage for the sake of contrast and an enthusiastic urge to revise one’s argument in 

realization that, over a lifetime, contradictory claims would surely emerge- the presenting 

o f an immutable edifice of achievement bowing out to the sublime demonstration o f growth 

and reflection. This essay quotes from the style o f The Gay Science, which opens with a 

prelude in verse [39].

A “scientific” interpretation o f the world, as you understand it, might there

fore still be one of the most stupid of all possible interpretations o f the world, 

meaning that it would be one o f the poorest in meaning. This thought is in

tended for the ears and consciences o f our mechanists who nowadays like to 

pass for philosophers and insist that mechanics is the doctrine o f the first and 

last laws on which all existence must be based as on the ground floor. But an 

essentially mechanical world would be a meaningless world. Assuming that 

one estimated the value of a piece o f music according to how much of it could 

be counted, calculated, and expressed in formulas: how absurd would such 

a “scientific” estimation o f music be! What would one have comprehended,
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understood, grasped of it? Nothing, really nothing of what is “music” in it!

And what would one have understood in “formulas” if  they are known as nothing more 

than mechanics? In addressing this question, a thorny issue hanging from the previous es

say may be addressed. I ’ve argued for transparency in design o f artifacts- not that compo

nents should be rendered invisible but that they shouldn’t obscure their mechanical relation 

with other components. What’s the value in this clarity? Given the mechanical complexity 

o f many of our day to day artifacts like computers or over-the-counter drugs, isn’t it too 

much to demand that the user become intimate with workings o f their design? Perhaps. 

The urging here is not that the user must make this effort, but that the design avoid putting 

up unnecessary hurdles to those who do. The artist who examines the mechanical may 

indeed find value in the result o f  meaning. The remainder o f this essay will be devoted to 

a nexus o f mechanics, meaning and artist; specifically, how access to mechanism allows 

the artist to construct meanings, in the process mollifying obsequiousness to a machine’s 

fabricator. The outline will start with an examination o f causality and a justification based 

on intuition then proceed to discuss correctness, synthesis and knowledge. The bigger pic

ture remains a justification for literacy, in this case literacy as practiced with a common 

mechanical appliance, the computer.

In a few cases, formulas comprise an indispensable component o f mechanics where it’s 

unnecessary to even make much o f a distinction between the two. Formal mathematical 

analysis, the guardian of the formula, wouldn’t be much without the formula; the mechan

ics o f the enterprise organically includes the formula. But, pencils, conferences, cocktail 

parties and watercooler debates are also part o f that mechanics, particularly when consid

ering how the formulas come to have a meaning, ie. that they are true or are not [40], 

Computer programs are formulas and integral parts of the computer’s mechanics. The ac

tual rendering of the formula, ie. text typed out on the screen and the associated underlying 

data structures in the logic circuits and memory devices, is vital to mechanics o f the task. 

Without the program, the mechanics breakdown. Take the formula away, and the computer 

is as useful as bicycle without wheels. The equation modeling the flow rate from a cask of
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wine exists independently of the cask and carafe. The wine will flow without it. The design 

is straight forward and familiar enough that to increase flow, most o f  us will either try to 

increase the size o f the hole or increase the pressure by tilting the vessel; although, perhaps 

not with a large wine cask. Many besoted partiers without a single day of calculus to their 

credit know to pump the keg, thereby increasing pressure and flow. These are formula-free 

understandings of mechanical causality. Formula-free, formulated or modeled by formulas, 

each mechanism entails causal expectations.

Causality. One thing proceeding to the next. In physical systems something causes 

something else thus suggesting a temporal relation. First this then that. Gear one turns 

gear two. I ate bad fish then I got sick. The notion o f causality exists temporally in these 

exams. My desk holds up the computer, lamp and stapler. The support against gravity is 

instantaneous and continuous and free to ignore time from moment to moment as much as 

any o f us are able to ignore time. A mathematical proof is temporal in that there is a series 

o f steps; although, the steps can generally be easily run in either direction and, indeed, 

proofs are often arrived at by knowing the start and the final outcome, which is assumed 

to be correct, and subsequently filling in the rest. The causality exists between the steps, 

like a thin film existing between gear one and gear two. It is the stuff between the steps 

that causality is made of. And in the case o f proofs the stuff that allows the steps are the 

axioms, the basis of the argument, the rules allowing the proof to operate mechanistically. 

The axioms, in turn, may very well have once been theorems, algorithms, programs in need 

o f proving but that have since become widely accepted as an acceptable starting point.

A dilemma of magnitude should quickly be apparent particularly when the process is 

considered recursively. The axioms needed proving; the axioms for those antecedent proofs 

needed proving and so on down the line. I f  it wasn’t already, causality suddenly seems 

pretty hard to pin down. The thin film between the gears, holding up the lamp and justifying 

the next line of code becomes an infinitum o f even thinner layers. Mathematicians, thinkers 

who wade regularly into such patterns, have among their ranks some comments.

On the contrary, I find nothing in logistic for the discoverer but shackles. It
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does not help us at all in the direction o f conciseness, far from it; and if  it 

requires twenty-seven equations to establish that 1 is a number, how many will 

it require to demonstrate a real theorem?

Richard A. De Millo and his colleagues attribute this bit o f  reassuring reflection to the 

mathematician Henri Poincare in their article without citing a specific reference [40], It’s a 

curious comment for a worker who preferred to work his proofs from first principles, from 

the basic to the complex. A comment of frustration perhaps? Most of us are willing to 

jump blindly into the middle, proceed without full understanding. Indeed there may be no 

other way to tackle many problems. Their magnitude is unknown until they have been cir

cumnavigated; the first principle wouldn’t even be recognized until its progeny understood 

as they can at a local level. Indeed, the entire question o f which principle should be first 

principle might be asked. While A may exist independently o f B and B not independently 

o f A, in the process o f discovery, B may be more distant and even unreachable without 

passing through A just as I cannot reach the basement of a house without passing through 

the first floor held up by the basement.

Few would doubt the utility o f formulas. Most would prefer that they operate correctly, 

particularly when critical to health, happiness and well being. But the question o f  how well 

they can capture truth is less clear, a murky debate ripe for philosophical pondering and rich 

in history o f such musing. The debate flared up in the computer field, not coincidentally, 

about at the height o f interest in computer literacy and during the incipient rumblings over 

the new discipline of software engineering. As a consumer, I would certainly hope that 

engineers take what precautions they can to ensure that formulas are correct. But programs 

are very complicated formulas often working in highly dimensional space with data that’s 

difficult to impossible to predict.

One school o f thought is forcefully argued in Edsgar Dijkstra’s reflection “On the Cru

elty o f Really Teaching Computer Science” [34], Dijkstra makes a strong case for the 

teaching of abstraction in computer science at the expense o f software engineering, which
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he calls the “doomed discipline.”1 The debate parallels the unnecessarily recrudescing 

struggle between rationalism and empiricism, or at least their operators deductive logic and 

induction. In this view the computer is a symbol manipulator, nothing more. Programs 

are formulas and like their mathematical counterparts, can be proven. The can be proven 

using formal methods and Dijkstra argues they should be proven, making formal proofs 

a cornerstone o f computer science education. O f low regard in Dijkstra’s argument is the 

more empirical approach o f engineering, ie. model and test. Testing in engineering may 

include stressing the application against possible input data. But Dijkstra would deny stu

dents the feedback o f running their programs, avoiding the iterative approach o f coding, 

testing, modifying. Experimentation is removed from the programmer’s toolbox.

Teaching to unsuspecting youngsters the effective use of formal methods is one

of the joys o f life because it is so extremely rewarding[34],

Dijkstra suggests a joy that is beyond the engineering sureness o f a correctly working 

program- Dijkstra appears to want to clean up engineering, for instance, suggesting that 

programming bugs should be called by the more appropriate name “errors.” But, the mo

tivation appears from a different place than wanting to build better bridges or airplanes. 

The formal proof is joyful because of its allegiance to truth, and truth must be deductively 

knowable, ie. rational. O f course, the formal proof is true in that it follows its rules or, 

alternatively, contains syntactical errors and does not. The proof’s correlation to other truth 

remains an outstanding dilemma as does meaning, except, perhaps the meaning that the uni

verse operates on causality quite deeply. The enemy o f the formal proof in this argument 

is intuition. But in this case the enemy is left ambiguously defined as the ambiguous, that 

which may interfere with formal proof’s clarity. Seymour Papert describes this a misvalu- 

ing o f intuition by unfairly making it the scapegoat o f our mental errors. Indeed, intuition 

should be defended for its valuable role to mathematics and thinking in general.

1Dijkstra also harshly criticizes artificial intelligence. The argument, simply put, is that computer science 

wastes its energy attempting to mimic such an inferior device as the human mind. It should be striving to 

offer a better alternative.
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DeMillo, Lipton and Perlis explicitly identify themselves as “antiformalists” in their 

previously mentioned article, “Social Processes and Proofs of Theorems and Programs,” a 

broadly viewed but deeply implicated pondering that predates Dijkstra’s “On the Cruelty” 

lecture by a decade. Ostensibly, the goal is a defense o f software engineering, an empirical 

approach o f trial and error striving to write the best programs possible to deal with messy 

“real world” problems. The problem could be simply stated as one o f economy, and most 

o f  us would probably be satisfied. Who wants to prove the program tracking payroll for the 

French National Railroad, which in 1979, apparently had 3000 different pay rates differing, 

for factors as esoteric as the grade o f track on which the train had traveled [40]? Or, from 

my own experiences, how to move Sumitomo Pharmaceutical’s GATC gene expression 

data and its correlating meta-data of messy patient medical histories from spreadsheets 

into a relational database- who smoked, who has an allergy to shag carpeting, who had 

a hysterectomy in 1976. When theorems can go thousands o f years unsolved, or appear 

solved only to be “proved” incorrect hundreds o f years later, good enough is good enough 

for programming everyday problems, let the trains run on time, mostly if  not always. These 

authors take a further step in contradicting the position of program specification as an 

exercise in formal mathematics by examining how proofs come to be believed, a process 

they find rich in its social dimensions and more often than not bystepping that immutable 

gluing film o f causality.

While the social process, itself, may have mechanism and causality, hypothetically re- 

vealable by sufficient dissection, a key philosophical difference is the many substitutions 

o f “is” with “believe.” The epistemological question addressed by rationalism, empiricism 

and its many reasonable synergisms is not one o f how we come to know truth but how we 

come to have beliefs about truth. At issue is the relationship of what we know with what is 

actually going. It’s a reasonable difference since, no matter how direct the connection, the 

inside o f my head and the inside o f the sun are two different places, or at least there’s no 

reason not to maintain that they are. Now, it’s important to pause for a moment. Since many 

heady philosophical issues suddenly present themselves. These questions have been better
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dealt with elsewhere by more capable philosophers. The task presently is to raise questions 

o f design o f software and the use o f the computer. These philosophical inquiries will offer 

context for considering humans interacting with their artifacts, computer software in this 

case. Differentiating between what I know about the inside o f the sun and the actual inside 

o f the sun admits the possibility that mental models are a reasonable analogy to thoughts. 

“Mental models,” afterall, rolls off the tongue so nicely it’s easily accepted as euphemism 

for thinking. But, in some paragraphs further on, “mental models” may become a bit sti

fling. “Mental” suggests confinement to the head, an unfortunate limitation that ignores not 

only the role o f the rest o f the body in thinking but ignores the role o f artifacts in thinking as 

well. “Model” underscores that the thought is only representative o f some other real thing. 

While this shouldn’t overtly hurt the subsequent argument, it may belittle the very real con

nections between the real and the real model. Back to belief versus truth. Deduction, when 

following its own axioms, certainly can be proved more or less correctly. Not every math 

problem ever solved, say on student tests, has been solved correctly. Transcription errors 

and logic errors abound and even by their own internal rules formal proofs can go astray. 

What we know, well, just isn’t always correct. So deduction isn’t perfect- this a realization 

before even discussing deduction’s reliance on messy old empiricism. Deduction isn’t per

fect in obtaining the correct answer, but can deduction know perfectly? Can I answer any 

possible question about the internals o f the sun without a mental model that’s a perfect little 

sun burning in my head? Even such a complete bundle o f thermonuclear thought would 

be incorrect in magnitude.2 O f course, most logicians, including Dijkstra I believe, would 

argue that few proofs are worked out by finding all combinations o f possibilities [34], It’s 

quicker to work with definitions than every member in the set o f  the definition. And with

2Without specifically referencing mental models, Emily Dickinson optimistically noted the substantial 

carrying capacity o f the brain [41], “The Brain is wider than the sky, for, put them side by side, the one the 

other will include with ease, and you beside.” While I agree with the ecumenical punchline o f  Dickinson’s 

poem so far as god as mental construct, “The brain is just the weight o f  God, for, lift them, pound for pound, 

and they will differ, if  they do, as syllable from sound,” the first verse suggests an impossible omniscience, 

an ill-fitting one-to-one correlation o f  mind and sky, a sky without horizons.
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the introduction of definitions, rationalism, the prodigal explanation, has been reunited with 

empiricism. Thinking deductively about the sun starts with the observation of the sun or at 

least a suggestion that the sun exists such as a midwinter postcard from the tropics. On top 

of that, there’s nothing stopping me from examining my own rational thoughts empirically 

since, like I sense the sun, I can sense my own thoughts.

Writing a proof may be accomplished with paper and pencil. Believing a proof is en

tirely different. The social process o f which DeMillo and team write occurs at conferences, 

cocktail parties, lunches, watercooler chats among other forums that include both schol

arly and informal discussions. The ground turned out by the tines o f this process is belief 

about the correctness of the proof. That “p ro o f’ needs proving even in its completely 

explicated form should raise doubts about the truth-stuff gluing together the immutable 

steps to the proof. That the social processes determine belief in a theorem and not nec

essarily the formal steps of the proof, which may not even exist in some cases, might be 

demonstrated anthropologically. But, DeMillo, Lipton and Perlis, being computer scien

tists, continue their analysis with a critique o f the formal proof. Where Dijkstra finds the 

magnitude o f the computing machinery “radical” and “revolutionary,” they find the mag

nitude o f proofs monstrously debilitating- citing, as an example, Alferd Whitehead and 

Bertrand Russel’s lengthy Principia Mathematica . While that three volume work covered 

many basic mathematical axioms, it hadn’t even taken on the three thousand pay rates of 

the French National Railroad. Historically, once accepted proofs can come to be discred

ited. Famous examples include Fermat’s Last Theorem and the Riemann Hypothesis that 

have seen proofs come and go [40]. Similarly, DeMillo et al. describe an incident with 

two proofs derived by separate research groups working in the area o f homotopy, the con

tinuous (or analog) transforming o f one function into another, which incidentally was also 

a key interest o f Poincare. The two proofs contradicted each other. But when the research 

groups exchanged results, neither could find fault with their peer’s work. The successful 

proof can be equally confounding, DeMillo et al. noting that Paul Cohen’s work with forc

ing in set theory was hardly understood even by competent mathematicians when it first
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appeared. Finally, this assumes that people can stomach, without erring themselves, the 

dense notations often employed in formal proofs.

These problems all share a common thorn in the finger o f truth by formal logic; hu

mans must experience and interpret the proofs. There is a transformation from the original 

informal specification motivating the proof to the actual proof. While the proof may be de

ductive, it must be sensed, experienced and very likely only in small parts at any given time. 

One cannot focus on the entire proof simultaneously, most o f the logic being held in place 

by memory but beyond the horizon of immediacy. That all might even be reduced to a proof 

has, itself, yet to be proven. The possibility exists on top o f a faith, perhaps probabilistically 

based, ie. that since some things work out as proofs, it’s iogical that everything should work 

out as a proof- induction justifying the admissibility o f proof in truth-saying. It’s probably 

a safe conjecture that everyone I ’ve dragged into this debate, including myself, likes formal 

proofs to some degree. After all, these are the musings o f mathematicians and computer 

scientists each o f whom has found utility in the formal proof. But the mechanics are not 

always similar, ie. formal proof versus experimentation. What is understood as the mean

ing of the formula articulated as “you don’t get something for nothing?” The correctness 

o f the formal proof may be reassuring, free o f vagaries and ephemera, but such confidence 

comes at the price o f ignoring the question o f causality by predefining acceptable incre

ments to proof’s movement. The other position, for the moment labeled the antiformalist, 

casts suspicion on all that is sure by not only questioning the origins o f first principles but 

also the possibility o f ever finding all first principles and connecting them to all other first 

principles, whether logically impossible or merely humanly impossible. Suspicious, but 

not necessarily uncanny. One needn’t prove gravity to get out o f bed. The antiformalist can 

boast strong support in our deep experience of the many things that work most o f the time 

as we expect them too- that and an approachable notation.

The two opinions could be distinguished by the admissibility o f intuition. The formalist 

regards intuition as intuitively misleading, a crutch of laziness where the rigor o f proving 

has yet to extend. The Dijkstra human must bd truly lost in the world with their inherently
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faulty intuition. Curriculums stressing formal proof should be designed “to further sever 

the links to intuition” [34] But this hardline stance is comical. Intuition is ineluctable. It is 

intuition that would drive a belief that formulating the absolute is possible. Even if all was 

proved, formally, the exegesis would be so enormously beyond the human attention span, 

intuition would provide the compass to navigate the argument. And, this is a big punchline, 

intuition is the glue holding together the components o f the proof. The validity of a causal 

relationship will only be broken down so far, irregardless o f whether further reduction is 

possible. The process needn’t continue beyond the point where intuition has been satisfied. 

This last point essentially provides a defining description o f  intuition, the unit o f proof that 

is accepted as obvious.

As an aside comparing optimistic and disparaging views on intuition, let’s return to 

Poincare for a moment, a mathematician well known for rigorous proofs and previously 

noted in this essay for recognizing the role o f  the aesthetic in mathematical research. In the 

chapter o f The Value o f  Science titled “Intuition and Logic,” Poincare gives intuition a dual 

role in mathematical inquiry in some ways similar to phenomenological suggestion of its 

meaning, ie. he appears to regard it as a basic unit of truth [42]. But he finds these units 

differ between different individuals who he calls “analysts” and “geometers”

M. Meray wants to prove that a binomial equation always has a root, or, in 

ordinary words, that an angle may always be subdivided. If  there is any truth 

that we think we know by direct intuition, it is this. Who could doubt that an 

angle may always be divided into a number o f equal parts?

Poincare goes on to point out that Meray, an analyst, does in fact doubt the truth based 

on intuition, going on to develop a several page proof to demonstrate to himself that it is so. 

Professor Klein, “the celebrated German geometer,” feels no such need and instead relies 

on analogy to electrical currents on metal surfaces to develop his justifications. Poincare 

doesn’t fault intuition for mistakes but rather blames imagination, for instance, we can

not imagine a line without width, though that is indeed the part o f  the definition o f a line. 

Furthermore, the two cohorts differ in their use o f sense, the geometers being “intuition-
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alists” with an urge to paint and the analysts “logicians,” who also rely on intuition but 

one free o f sense and rather an intuition o f pure number. In this way, Poincare presents an 

argument between those compared above, that the geometers are working more like Papert 

while the analyst more like Dijkstra. The roots for this schism, he posits, are deep, “The 

mathematician is bom, not made, and it seems he is bom a geometer or an analyst” [42], 

The differences are fundamental and ineluctable properties o f the human mind, a position 

which will not be further debated here other to say that this appears, to me, far too self- 

fulfilling a prophecy, one that fails to account for the plasticity o f the brain or that analysis 

and geometry are social and cultural enterprises that occur outside an individual as much 

as within and perhaps needn’t exist at all. Stopping short o f speculating any value judg

ment Poincare might have made on the utility o f intuition, if  one were to believe a mind’s 

predetermination to a type o f intuition is ineluctable (though I do not necessarily believe 

this), then surely intuition plays an invaluable role in human experience, understanding and 

construction o f  knowledge and culture, its influence and importance equally ineluctable.

A former employer o f mine, Dr. Alan S. Segal, more than once chided me “assume 

makes an ’ass’ out o f ’u ’ and ’m e’.” O f course, his research career, in small part, rested 

on the outcomes of the electrophysiological experiments I had been hired to conduct. His 

concern was understandable and softened by good humor and tolerable criticism. Intuition, 

to be fair, has no perfect track record. It gets us lost down the wrong roads, the wrong 

lovers, the wrong fish taco, the wrong shirt-pants ensemble and the wrong lines o f reason

ing. But, these misses provide testament to intuition’s ubiquity, not an unavoidability of 

abject council. Intuition can join the ranks o f deduction, formal proofs, empiricism and 

any other prescriptive or descriptive model o f thought- a “bug” is an “error” and by any 

other name would be equally incorrect. But to prelude the next two themes, intuition is 

trainable and intuition is more than gossamer. Intuition can supply as firm a grounding as 

any available.

Computer science’s cousin cognitive science has, like philosophy, endeavored to pro

vide a more meaningful understanding of intuition than as faulty faculty and scapegoat to
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our poorer decisions. At issue, for most, is not the existence of intuition or even that it plays 

a role in mathematical understanding, but its trustworthiness and utility. This juncture re

turns to the topic to computer literacy. One of the earliest proponents o f teaching computer 

programming, particularly to a receptive audience such as children, was Seymour Papert- 

co-founder o f  M IT’s artificial intelligence program and careful student o f Jean Piaget. Pa- 

pert’s contemporary, Alan Kay, suggested literacy was not the ability to read marketing 

labels but the fluency with which to plow through philosophical writings and prepare fluent 

critiques; in closer reference to mathematics, literacy was the ability to identify a problem 

that benefited from mathematical modeling and possession o f the necessary skills to ac

complish that task, skills that now invariably involve computer programming o f some sort 

[35], Arguably, these are richer goals than the more commonly heralded expectations of 

operating an employer’s office productivity and database software. Papert elevated the bar 

higher yet. First, debugging (or “de-erroring” as Dijkstra might prefer) is a widely 

applicable problem solving skill that transcends disciplines and is easily honed in the 

programming environment. If  there’s a single sentence in my thesis looking to make the 

case for computer literacy, it is this. That debugging computer programs involves problem 

solving is unlikely to be contentious. The argument values programming for reasons other 

than simply operating the computer; thus claiming programming to be extraneous to the 

masses when more user-friendly interfaces exist offers irrelevant protest. Finally, the utility 

o f learning debugging can stand with an appeal to economy, religion o f so many pragma

tists and industrialists, without appeal to philosophy. Fortunately, Papert does not leave the 

argument at that and does extend his analysis with the rigor and elegance o f philosophy. 

Papert had worked in Geneva with Piaget and in his book Mindstorms: Children, Comput

ers and Powerful Ideas [2] generally admires Piaget’s genetic epistemology- that children 

are exquisite and capable, even innately, epistemologists who busily bootstrap themselves 

by acquiring knowledge, acquiring strategies for acquiring knowledge and thinking about 

what knowledge is. Children, and by extension all o f us adults too, are busily using our 

intuition to comprehend the world and, yes, our intuition is sometimes wrong. Intuition
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needs debugging. While this does not yet directly address why intuition should be cut 

slack into our consideration, other than by its sheer inevitableness, the challenge is raised 

to build strong, correct intuitions.

Perhaps, the idea o f debugging intuition hasn’t strayed far from what the formalists seek 

while supposedly ignoring intuition and laboring on proofs. Without a serious sidetrack 

into why intuition is faulty, a few examples would suggest the overextending o f patterns 

for blame in some circumstances. A model provides an abstraction workable in many 

scenarios, but not necessarily universally. Papert provides an example o f a gyroscope [2], 

The gyroscope is balanced on a narrow base and, intuitively, should fall over as objects with 

big bodies and tiny feet often do. While one may question the physics o f the phenomena, 

one may also question why their often correct intuitions led them astray. To paraphrase 

Papert, one doesn’t need proof that the gyroscope will stand; it’s already obvious through 

experience that the gyroscope will remain upright while spinning. One needs resolution 

with their conflicted intuition. Working out and contemplating proofs may help provide 

an examination o f intuition and means for its extension. The computer provides another 

platform for experimenting with intuition’s expectations. Write a program that models 

something, perhaps the gyroscope or perhaps something simpler like the area of a right 

triangle. Run it. Are the results as expected? Finally, if  all is not well, what changes might 

be made to the program to correct the behavior? Surprises could be the beacons o f evolving 

intuition. The program acts as placeholder for memory as well as an instruction list to the 

machine on how the model should run. The neophyte programmer is not being asked 

to prove the program but to prove their intuition via the program. It’s important to note 

that Papert’s examples in Mindstorms needn’t get dragged too far into the debate between 

formalism and software engineering. The initial models demonstrated with turtle graphics 

in the Logo programming language are small and geometric such as writing an instruction 

list that causes the turtle to sketch a triangle on the screen. The program already contains 

all the data it will ever need. It is a proof o f itself, a set o f one, and not rigorously a proof o f 

the general case appliable across some larger set. However, the experience, the “ah-ha” o f
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the cause-and-effect experimentation feedback, betters an intuition that may subsequently 

be directed to many tasks, including proving the general case for a set.

It’s not an obscure extension to stretch the computer as mathematics laboratory to a 

place to experiment with the phenomena mathematics is sometimes called on to model, 

like physics. Indeed the very idea of model suggests that the mathematics isn’t just playing 

for its own sake. The word used in the Logo community is “microworlds” and it surely 

contains echos o f virtual reality. The association o f modeling and virtual reality is perhaps 

unavoidable since the latter must make strong use o f the former. My analysis o f virtual 

reality would be long, vitriolic and highly polemic. The counterpoint for that analysis 

would be art history and the suspicion that the development o f virtual reality will parallel 

art history in its quest for mimesis (classical), its failure to attain it, an introspective period 

where it asks itself what it is instead o f what it tries to be (modernism) and when it finally 

cloys o f that will move happily forward as entertainment without its earlier pretensions. 

Perhaps the full thought will be forthcoming in another volume. But, I ’ll be more pleased 

if  I can avoid ever having to write it. For now, modeling and virtual reality will be compared 

in light o f computer literacy and say that two ideas imply different scopes o f control for the 

user. Modeling is usually undertaken to help better understand a problem, like building a 

bridge or the epidemiology o f an infectious disease, in an economical and safe manner. In 

ideal cases, the model is easily modified and scenarios compared.

Given the virtual reality insinuation o f a “microworld,” one should ponder which intu

itions are being debugged? Could it be nothing more than the intuitions needed to write 

a correctly functioning program? Excluding sitting up, crawling, throwing things, walk

ing, sledding, jumping and the like, my own early confrontations with my intuitions about 

gravity were not spurred by gyroscope; although, I recall finding them fascinating but ac

ceptable in and o f themselves. O f vivid recollection, because o f the dilemma presented 

to my intuition, were the competing models o f gravity I had from experiencing my own 

body, my early exposure to mathematical modeling o f gravity and the virtual carton body 

o f Wiley Coyote as it fell, along with enormous sandstone slabs, again and again down
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unimaginably deep canyons. While any first hand experience I would have with the Amer

ican desert southwest would wait two more decades, there were also some serious incon

sistencies with rumors I had heard about feathers, cannonballs and leaning towers and my 

own experiments jumping off the tops o f some sandy landslides along a nearby river bank. 

Why did Wiley and slab sometime hang for seconds in thin air before gravity kicked in? 

How come rates o f acceleration o f slabs, coyotes, roadrunners and the occasional acme 

explosive device suddenly change relative to each other? How was a slab able to act like 

a teeter-toter with the end bearing Wiley levered downward in midair without any seeable 

fiilcrums? Why couldn’t Wiley simply change direction by stepping off the slab, sideways, 

or jumping straight up prior to impact and thus save himself yet another flattening, which 

I clearly and correctly associated with rapid deceleration in the downward vector? The 

intuitive dilemmas presented exciting challenges despite the virtual source and, hopefully, 

most have been cleared u p - for instance, with clarification via a .22 rifle and some beer 

cans during yet another childhood developmental stage, one not covered explicitly by Pi

aget. Aiming directly at the bottle fails to assassinate it, the bullet never truly travels a 

straight line. The slab and Wiley must hang in midair long enough for Roadrunner to pop 

his head in from the side o f the screen. It must hang while Wiley and Roadrunner calmly 

look at each other, Roadrunner with an innocent insouciance and Wiley an indefatigable 

resignation at having not only missed his prey as surely as Evel Rnievel missed the jum p 

in Snake River Canyon, but with similar consequences. The slab must hang in mid air long 

enough for Wiley and Roadrunner to slowly turn, in unison, and share the sentiments drawn 

into their countenance with a stare out o f the screen toward us the viewers. Finally, before 

the slab starts a decent o f instantaneous acceleration, Roadrunner must “meep meep.” The 

slab hangs because there is cartoon meaning in running amok o f our intuition. The gravi

tational pause isn’t license or convenience, but an intentional flaunt in the face o f  intuition 

meant to provoke the uncanny.

Models reflect. A model, like a popsicle house, abstracts attributes o f an ideal model, 

a house, for consideration. Computers are math machines and as such are excellent for
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directly exploring mathematical ideas, particularly those o f combinatorics. Computers can 

also be used as musical instruments. O f course, one can tap at the keys, drum on its side or 

rip it from its cubicle foundation and send it noisily crashing through a plateglass window, 

sounding a resonating and shattering thud on the pavement ten stories below. The com

puter is full of oscillations, both symbolic and electrical, controllable by the program. Any 

computer can do this and most personal computers today come equipped with audio cards 

that will condition these oscillations to be played through speakers. A music synthesizer 

contains many “models” o f analog sounds, but the musical performance stands on its own. 

The musician may quote or sample. The composition may even model an environment. A 

favorite free jazz trio o f mine, The Fringe, does a mean swamp full o f  frogs using only ana

log instruments: a drum kit, saxophone, bass and the murky light o f the Willow Jazz Club. 

The timbres are largely those expected o f a jazz trio, but timings belong to a stagnant pool 

full o f  amphibians and a few flying pests. The musical composition doesn’t require formal 

proof even though formal devices may be used in musical composition such as counterpoint 

or algorithmic music. The computer, program and all, is not acting as a proxy or reflector 

o f an outside system via abstracting functions.

Without delving into the deep questions o f what is judgment and what is aesthetics, 

more popular fodder for philosophical consumption, suffice to say that the correctness 

o f some computer programs depends largely on aesthetics. While some heady algorithm 

based music like Bach’s counterpoints or minimalist Terry Riley’s “In C,” the key and not 

the programming language, may be in search o f  a proof; the typical sweaty, dim, flesh filled 

club is likely to let it, and many other things, slide. Turtle graphics, the early graphics util

ities o f the Logo programming language and the core o f Logo as a curriculum, appealed 

to the students’ aesthetics. Programming a turtle to sketch on the screen presented definite 

formal problems such as, “how to describe a square in the Logo language.” But combining 

squares with triangles, circles and other shapes to create the picture o f  a house, flower and 

setting sun makes an appeal to correctness somewhere other than the continuity o f deduc

tive steps for a set o f axioms and lemmas. While such a goal and the freedom to explore an
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openended question, or rather an openended answer, endears programming to those who’d 

prefer to be drawing over proving, Papert, following arguments o f Poincare, suggests that 

aesthetics plays an important role in mathematical insight.

In reality, according to Poincare, the mathematician frequently has to work 

with propositions which are false to various degrees but does not have to con

sider any that offend a personal sense o f mathematical beauty [2],

So, let’s review. Whether formalist or antiformalist, a description labeled as “intuition” 

usefully demarks a basic unit o f  acceptability. But where to ground this intuition? The 

sensuous. Sense.

And with the sensuous I’ll make reluctant bedfellows o f the logicians and the phenome- 

nologists. Perhaps it’s glitch philosophy to do so. I ’ve been warned. But the defense will 

be that it’s a consideration by which to view design decisions, particularly in designing the 

use o f computers. The excuse will be that I ’m a geek considering design and simply find it 

useful to do so. The link springs from phenomenology at the request o f epistemology, par

ticularly logic, but not necessarily logicians. With modem philosophy and its fulcrum on 

Kant, debate over thought’s relation to truth and mechanisms for coming to have beliefs has 

been fruitful but mired in abstractions o f thought-in-the-head. Rationalism and its operator 

deduction, empiricism and its operator induction or some combination of the two has failed 

to capture intuition, despite relying upon it. Empiricism may, mechanistically, come first 

and last with deduction providing economic thought crunching in between, perhaps even 

necessitating the creation o f a subconscious since, as soon as deduction occurs at a con

scious level, it morphs into empiricism, closing the metaphysical circle as we empirically 

consider our own deductive thoughts. The two explanations, deduction and empiricism, 

are analogous to homotropic functions; the space encompassed allows easy “you can get 

there frotn here” but the space remains locked up as abstractions, head thoughts and mental 

models. The dancer, the surfer, the saxophonist, the linebacker, the waiter deftly moving 

across a crowded floor with brunch for four balanced from his shoulder, for instance, ex

hibit refined proprioception. Psychology may create mental models explaining the spatial
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sense o f our own bodies and the coach may chalk-out a play in a blackboard schematic, but 

the body will make the moves. The phenomenologists, while kept company by artists and 

athletes, provide an eloquently written consideration o f the embodied mind, a mind that 

does not exist without the body anymore than thought exists without intuition, intuition 

based on sense.

Edmund Husserl doesn’t appear to be out to undermine science in Ideas Pertaining 

to a Pure Phenomenology and to a Phenomenological Philosophy [43] but rather aid sci

ence in it’s failure to adequately handle intuition. Husserl takes science to task, smug in 

its increasingly self-referential successes, for it’s lack o f interest in “de facto  sensuously 

intuitabie shapes.”

It can then be seen, furthermore, that exact sciences and purely descriptive 

sciences do indeed combine but that they cannot take the place o f the other, 

that no exact science, i.e. no science operating with ideal substructions, no 

matter how highly developed, can perform the original and legitimate tasks o f 

pure description.

“Original” suggests a hierarchy and echos “first principles.” The first principle, how

ever, are not necessarily the root node o f some tree on which the leaves depend, but “prin

ciples,” the glue o f the limbs making credible the link between each and every node in 

the tree, sensuous edges to the graphs o f more traditional epistemology’s mental models. 

While our belief o f the proof may rest on intuition, should that be the interest at hand, it’s 

discourse takes the form of “pure description.”

The most perfect geometry and the most perfect mastery o f it cannot enable the 

descriptive natural scientist to express (in exact geometrical concepts) what he 

expresses in such a simple, understandable, and completely appropriate man

ner by the words “notches,” “scalloped,” “lens-shaped,” umbelliform,” and the 

like- all to them concepts which are essentially, rather than accidentally, inex

act and consequently also non-mathematical.
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It’s a dangerous proposition to say, “but mathematics can’t do this,” since a new math 

is always inventable-just like a new sentence, particularly as math has become more com

fortable with “close enough” estimations, which is at least since Newton and the Calculus. 

Maurice Merleau-Ponty, another eloquent phenomenological philosopher and key inter

preter o f Husserl, died in 1961. In 1959 at Citroen and in 1962 at Renault, mathemati

cians Paul de Casteljau and Pierre Bezier respectively developed the cubic curves known 

as Bezier curves for modeling curved automobile components. Today such cubic curves 

are standard in computer graphics. A surface o f b-spline or Bezier curves would be the 

geometry o f choice for modeling the shape o f  a scallop. Still, almost any child intuitively 

knows the complex shape of a scallop, but how many people can solve a third-order poly

nomial? Merleau-Ponty, who lived another twenty three years past Husserl, more generally 

states, “One must look for the sense o f mathematical concepts in the life o f consciousness 

on which they rest” [44],

In the case o f electronic music, if  not a much wider inclusion o f genres, Nietzsche’s 

challenge as to what has been comprehended by a scientific, formulaic estimation o f mu

sic can be turned around. The formulas are the instruments o f production; the “sense o f 

mathematical concepts” finding a life in consciousness through the sensuousness o f its mu

sic. Earlier, the paraphrase o f Papert’s analysis o f Poincare’s view o f the role o f aesthetic 

in mathematics suggested another sensuousness, one found more directly in the formula 

themselves, without music. That will be left to the intuition o f the individual; but, relating 

this thread back to computer literacy- the music provides a sensuous answer to the for

mula. Music, or some other appeal to aesthetic, can be explored with the powerful tool 

o f formula with its predilections for deconstructing and identifying abstractions, patterns 

and connections. For those interested in the teaching o f mathematics, the appeal to the 

motivating aesthetic provides the student a means, an end and a vehicle for exploring the 

intuitive connection between the two. Shift the challenge from finding the formula to pro

ducing a sound to understanding why a formula produces a sound. That the deductions 

correctly follow their axiomatic allowances may or may not be a goal, but understanding
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why a deductive step was taken, ie. an appeal to intuition, should always be.

Outsiders see mathematics as a cold, formal, logical, mechanical, monolithic 

process o f sheer intellection; we argue that insofar as it is successful, mathe

matics is a social, informal, intuitive, organic, human process, a community 

project [40],

Despite DeMillo et al. warmly describing mathematics with kind recognition of the 

role intuition plays, science and scientists, in general, were not asking phenomenology for 

its help. Positivism alone quenches many scientists’ appetite for philosophical explanation. 

Even in Papert’s essay “The Mathematical Unconscious,” in which he strongly supports 

the role o f intuition and aesthetics in mathematics, he writes, “ The phenomenological 

view of abandonment is totally false,” and goes on later in the paragraph, “This time the 

phenomenological view is even more misleading since the finished piece o f  work might ap

pear in consciousness at the most surprising times, in apparent relation to quite fortuitous 

events” [2], Papert is discussing the role o f the subconscious in mathematical postulation, 

a sort of analytical computing area using some sort of memory swapping to communicate 

data with the consciousness- “abandonment” referring to the handing down by the con

sciousness to the subconscious m ind’s consideration. Our goal at present is not to reconcile 

entire intellectual movements and their progenitors, or even to enumerate their differences. 

Rather, if  Papert wants his unconscious mind and his mental models, it shouldn’t affect this 

argument; although, “subconscious mind” would better avoid confusion with the symptoms 

o f high falls, syncope and Friday night drinking binges. Instead, allow the argument to con

tinue its slow segue toward a punchline, or at least conclusion, that meaning is a process of 

construction.

Not only is the mind embodied but that body extends outward into our artifacts, and 

inward from them. Constructing meaning, constructing artifacts and constructing our bod

ies are one in the same. Artifacts can be inherited, along with their meanings. Computer 

literacy allows the user to construct meaning from and around a ubiquitous and poten

tially shackling technology. Within the Papert narrative o f duality- reality and its model,
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consciousness and its sidekick the unconscious mind- interesting claims are made about 

sense and mental models and its implication on the design o f the Logo programming lan

guage. Papert’s framework o f duality, the design justification o f  the Logo programming 

language, and particularly turtle graphics, does touch on sense, particularly sense o f the 

body. Borrowing terminology from Sigmund Freud and psychoanalysis, Papert argues that 

intimate and intuitive knowledge o f one’s own body is a well spring pattern for debugging 

mathematical problems through geometry- labeled “body syntonic” in Mindstorms. Pro

gramming becomes a sort o f choreography of the turtle mappable to a choreography o f the 

programmer’s body. The program, for instance, could instruct the turtle pen to sketch a 

square on the screen. I f  the program fails to instruct the turtle to close the shape, perhaps 

by missing a ninety degree turn, the program can be literally stepped through across the 

ballroom floor, ie. debugging by dance.

This essay began by laboring over a debate played out by logicians. But its theme, if  

it’s remained hidden, is on making art, really making art with and out o f technology and 

the value for a literacy o f technology. The lengthy discourse on intuition has intended to 

provide the bridge between “logic” and “art,” if  any bridge is really necessary; some may 

find no need for travel between the two words or, maybe, already find them significantly 

overlapped. Causality, at least in my naive exposition, has been used synonymously with 

meaning, ie. causality is meaning. The cause o f the tree falling in the forest without witness 

exists without meaning but to understand or speak o f the cause o f the tree’s fall necessarily 

exercises meaning. Causality ultimately reduces to intuition and intuition to sense. Nothing 

o f  this immediately justifies excitement for computer literacy or art. The populist promo

tion o f literacy is something of a cultural habit springing from enthusiasm for democracy 

and respect o f  the individual. Art, specifically the act o f fabrication, similarly acts as an 

enabler o f self-determination among a people overrun with consuming choices. The enthu

siasm for computer literacy comes from a philosophy of athleticism, a philosophy amply 

demonstrated by the do-it-yourselfer.

But while appealing to a populist sense o f equity, advocacy for computer literacy ap
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peals to individualism and a laissez-faire right to make one’s self: that notion being found, 

in parts, not only in political rhetoric but in the constructivist education espoused by Sey

mour Papert or the bodily synthesis o f phenomenologist Merleau-Ponty despite their dif

ferences on many points. Sense glues together intuition, causality and meaning with the 

body. Our philosophical investigation becomes enriched when the epistemological abstrac

tions o f mind are put into context o f the body, ie. the embodied mind. Mind does not 

exist without the body. The mind o f science fiction, a brain floating in solution, is a much 

different mind from that moving and sensing its way through the world. The edges be

tween the world and the embodied mind are as transparent as they are crisp. Just as we 

might empirically consider our rational, deductive thoughts, the world doesn’t stop at our 

skin; the inside edge o f our bodies are inside the world as well. Furthermore, this prose 

becomes more powerful when considered in the context that our bodies and minds are dy

namic and in a constant state of synthesis o f what Merleau-Ponty calls “living meanings” 

in Phenomenology o f  Perception.

Whether a system of motor or perceptual powers, our body is not an object of 

an ’I think’, it is a grouping o f lived-through meanings which moves toward 

its equilibrium. Sometimes a new cluster o f meanings is formed; our former 

movements are integrated into a fresh motor entity, the first visual data into 

a fresh sensory entity, our natural powers suddenly come together in a richer 

meaning....

With such consideration, how might one consider artifacts as extensions o f bodies? 

Outwardly, artifacts are extended body. When we write with pencil on paper, the pencil is a 

body extension communicating the forces at the tip to the hand just as the hand moves the 

graphite tip across the paper. Merleau-Ponty gives an example o f the cane used by a blind 

man, an extending o f tactile sensation.

Hence my body can assume segments derived from the body of another, just as 

my substance passes into them; man is mirror for man. The mirror itself is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

5.2 Essay 100

instrument o f a universal magic that changes things into a spectacle, spectacles 

into things, m yself into another and another into myself.

Timothy Leary noted that when he drove a Pontiac, he was a Pontiac. The surfer, the 

saxophonist, the gardener mowing the lawn: each like an insect with their antennas feeling 

the world around them, internalizing and likely modifying it. Knowledge at a distance, 

whether an ancient mariner retelling stories, even apocryphal ones, or the tele-epistemology 

o f satellite communications. I sense, in some way, the thunderstorms in Hardwick, VT via 

my computer, the internet, a radar station in Burlington. The weather reporting mechanism 

extending my sense 4700km. Not only is the biological body, as intermediary o f the senses, 

a component o f the mind, so too is artifact as an extension o f the body:

Sometimes pretty language is useful. One could protest that while I might describe 

viewing o f artifact as some sort o f transcendental, hippy-dippy fusing o f consciousnesses, 

a lot is left up in the air after the gaze. Say I hike out to view some five thousand year old 

petroglyphs. For whatever mind-meld transpires, I really have no clue about the important 

questions that artist was considering. I can only conjecture the motivations and meanings. 

True. But perhaps I am expecting too much; like the freshman’s acid trip, they expected the 

gates of heaven but only got a dizzy headache and an upset stomach.3 But something was 

learned in the gaze. And something is learned in the feel o f the rock, a sense I now share 

with the long departed progenitor o f that creative spark.

Knowledge is not truth; knowledge is belief o f what might be true. The old aphorism, 

“I know what I know,” suggests that we act on the best possible information. It suggests 

a skepticism in what we know and its relation to truth. And, it suggests that it’s easier to 

know the present, to know what we have constructed into ourselves than to actually know 

the past. At the same time that I can study artifacts o f the past, I can only understand them 

in the present. The past may strongly affect my present, as in a fascist sentimentality. I may

3Or consider the countless jokes over abstract, particularly minimalist, paintings. But the jok e’s on the sar

castic skeptic who fails to recognize that the reified abstraction is realistic while the mimesis o f  photorealism 

is the fake o f  reality, except, again, that they are really fakes and really paintings.
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quote or cite, but the work carries on into the present. What I understand best is the lesson 

I have constructed into myself; my conjectures live in the present.

Artifacts impart a hegemony o f the body as well. Prisons or handcuffs are obvious ex

amples. Door knobs, the height o f  a chair or the length o f a symphony are others. Designers 

talk about the constraints o f designs. Those constraints are often factored into a design for 

good reasons such as safety. An elevator door has no handles and I am hard pressed to 

open it while the carriage is in motion. Computers and computer software are now full of 

constraints. Some o f this arises from the important engineering tasks relying on software. 

Should my program encounter data it’s unequipped to handle, better that a fallback mech

anism be provided that allows a graceful failure while the proverbial airplane and nuclear 

powerplant may go merrily on their way. Constraints are put into software to protect us 

from frustration. The concern is that a constraint on frustrating literacies is equivalent to 

illiteracy.
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Conclusion (Open ended of course)

This thesis makes an argument for computer literacy as a generally and widely useful skill, 

ie. a basic competency in contemporary education. Although the line is not sharp, “user 

friendly” is presented as often at odds with “computer literacy” by embracing design strate

gies that obfuscate the underlying operation o f the computer and creating obstacles to users 

taking full control o f the computer’s potential. The advocates o f user friendly designs are 

often software companies seeking to increase market share, companies that are all too will

ing to be stingy with their knowledge at the expense o f a more dependent user. While 

corporate hegemony motivates my interest in computer literacy, the arguments are built 

on top o f those by advocates for constructionist education. Computer programming, as 

opposed to multimedia drill-and-quiz style software, lends itself to hands-on education. 

Computer programming provides an ideal microcosm for learning modeling and modeling 

can be found at the heart of problem solving. Computer programming inevitably involves 

debugging and debugging is a problem solving skill that transcends a utility limited to 

computer science or computers.

When confronted with learning a new skill or technology, one is likely to start the ex

ploration somewhere in the middle o f things; the point here is to design into the machine 

the ability to move up and drill down on the mechanism to a level o f understanding that fits 

our motivations. The design of Smalltalk with an IDE that reveals the very code running 

its virtual machine is an excellent example o f the principle I ’m advocating. Open source 

platforms such as Linux are also an excellent example o f this principle, but Linux, albeit
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open source, remains opaque, a hurdle with a significant learning curve. Logo and Lo- 

goRhythms provide some alternative teaching languages that hope to help students in the 

direction o f having the skills to negotiate more confidently the mess that often accompanies 

free software.

What LogoRhythms is: a simple audio API in the Logo language that allows one to 

explore programming concepts in the audio domain. The emphasis is on basic manipu

lation of digital sound wave data starting with sinusoids. LogoRhythms is open source, 

free and cross platform. LogoRhythms follows in the model o f constructionist philosophy 

o f education where students are viewed as epistemologists coming to grip with what their 

knowledge is and taking responsibility for its construction through hands-on experience 

and empirical experimentation. Open source also allows the student to deconstruct; it pro

vides the mechanical translucency that enables the curious to push their envelope o f causal 

understanding.

What LogoRhythms is not: a full featured music synthesis API looking to compete with 

the likes o f Chuck or Max/MSP [45] [5]. Beyond lacking functionality such as a scheduler, 

it has several serious shortcomings: lack o f cross platform threading, a bulky notion of 

arrays that are really linked lists and lack o f a mixer. O f course, given the potentials of 

glitch, there’s no reason to completely rule LogoRhythms out as a vehicle for generating 

noteworthy music. But, its praxis is firstly educational.

What’s missing here is a good field study, ie. I had hoped to produce a narrative pro

viding demonstration o f the API being used by its intended audience. Such demonstration 

provides reflection that the project can accomplish what it purports as well as highlighting 

strengths, weaknesses and potential improvements. More importantly though, the project 

was meant to serve a real need, to help slow the erosion of computer literacy and give kids 

(or adults) the opportunity to see that programming isn’t so arcane and difficult a skill as 

the overuse o f the term “guru” would suggest. Given the bureaucratic difficulty o f orga

nizing even the simplest o f user studies within the school system, the project really needs
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to be a collaboration with an enthusiastic educator already on the inside of the system.1 

The project is open source- more than reasonable given the gracious source o f funding 

from a Canadian public university. But as Eric S. Raymond points out in his oft cited “The 

Cathedral and the Bazaar,” open source projects fail or succeed on the enthusiasm o f its 

user base, enthusiasm coupled with strong leadership [46],

Now then, in what direction might this inquiry continue?

This thesis has provided a three pronged approach toward an examination o f computer 

literacy. First, there is the engineering approach via the creation o f LogoRhythms, what 

I ’ve also called experimental archeology in that LogoRhythms’s base language o f Logo is 

a product o f the heyday o f computer literacy brushed up to take advantage of contemporary 

hardware capabilities. Second is a historical approach both tracing the evolution o f the em

phasis in HCI literature from “computer literacy” to “user friendly” as well as examining 

who made the early radical revolutions in computer science and where their backgrounds 

lay. Third is a philosophical argument that suggests a link between intuition and causal

ity, the body and knowledge, artifacts and hegemony and mechanical transparency as a 

democratic design imperative. Underlying much of these arguments is an assumption that 

many people in fact do not understand how their computer’s operate or have faulty expla

nations for the computer’s mechanics, that the users may feel a level o f alienation from a 

technology that they’re fully aware has been dumbed down to compensate for their simple 

understandings. Where philosophy may persuade by a convincing argument, anthropology 

can reinforce with empirical study. How do people fetishize the technology? What are the 

folk explanations given by the machine’s users for its mechanical operation? For instance, 

the brief user study described in chapter 4 included a question, “what numbers can a com

puter not represent?” Among the myriad o f responses given such as imaginary numbers, 

rational numbers, really big numbers, Roman num erals- each arguably incorrect responses- 

none o f the first year computer science or computer music students noted that the computer 

works with discrete numbers, it’s numberlines filled with an infinitum o f sizable gaps.

1 To get access to a classroom in Hawai’i, for instance, involves submitting one’s fingerprints to the FBI.
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HCI literature is often mired in the challenge test as evaluation method: how fast and 

how efficiently can a user do something. Focus groups, in my experience frequently used 

by corporate interface designerd, do attempt to query end users on how they actually used, 

felt and reacted to a technology. But how do the users use in situ! Ethnographies o f com

puter users do exist. Some dwell in heady debate o f sociological theory such as Jeffery 

Alexander’s “The Sacred and Profane Information Machine” that examines, via public dis

course, beliefs about the computer’s potential as salvation or apocalyptic damnation [47], 

Field ethnographies have also been conducted among computer professionals. Examples 

include Gary Lee Downey’s The Machine in Me: An Anthropologist Sits among Computer 

Engineers and Georgina Bom ’s Rationalizing Culture: IRCAM, Boulez, and the Institution

alization o f  the Musical Avant-guarde [48][49], But these volumes deal largely in questions 

o f culture and power and the deciphering o f  semiotics, less on the simple documentation 

o f beliefs and practices, enumerations less encumbered by debate over emic versus etic 

perspective. Other studies do employ ethnographic surveys to computer users in an effort 

to describe naturalistically how the users actually debug [50] or make software engineer

ing design decisions [51]. I say “naturalistically” as opposed to “prescriptively,” ie. how 

people do the job versus what they are told is an ideal way to do the job. Better examples 

o f such studies exist in mathematics, perhaps not surprising since mathematics is taught to 

most students at all levels o f their education with concomitant concern that the teaching 

be effective. Capon and Kuhl studied grocery store mathematics inside (and outside) the 

grocery store [52], Carraher et al looked at street mathematics o f primary school dropouts 

working on the streets o f Brazil [53] and Masingila examined algorithms used by construc

tion workers laying carpeting for a floor covering company in the western United States

[54], These papers offer excellent examples o f ecologically valid data collection efforts. 

While they focus on algorithms used day-to-day, the study I propose here would focus on 

the mechanical operation, including programming, o f the computer, not unlike the inter

view based studies o f Piaget for the bicycle [15]. How do just-plain-folks believe their 

computer operates?
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My own view motivating the design o f LogoRhythms parallels the model set by the 

tiny violins used by preschoolers studying classical music via the Suzuki method, a smaller 

size appropriate to the bodies of smaller players but fully functional as instruments. Most 

programming languages have a specific function for which they are adapted: Lisp to AI 

research, Java to enterprise level commercial applications, PHP for webpages, Logo to 

teaching, etc... Dane Bjarne Stroustrup writes, “If  you think C++ is difficult, try English”

[55], Suzuki posits that since all children can leam their natural language, a harder task 

than violin, all children can leam the violin... and leam it well [56], Turning Stroustrup’s 

quip around- why not teach children C++? Or maybe just C? Perhaps instead o f creat

ing LogoRhythms, I might have written a compendium o f “ 101 Rainy Day Activities for 

Your Kids with C++.” Without delving into the language’s many complexities, it doesn’t 

seem unreasonable to introduce variables, arithmetic, sequential execution o f  statements, 

conditionals and loops, the capabilities necessary for a language to be Turing complete

[57], While it might be harder to explore the digital audio themes o f LogoRhythms in C++, 

no doubt creative activities can be imagined that help provide a good imperative language 

foundation, for instance, ascii art drawings that show recursive patterns. In a nutshell, from 

a didactic point o f view, what’s so bad about a dangling pointer and a crash? The deeper 

meaning and value o f computer science isn’t necessarily to make functioning applications, 

but rather to explore, sensorially, a formal logic at high speeds. And, to echo Seymour 

Papert, to teach the widely useful skill o f debugging. To echo Alan Kay, to provide an en

vironment in which to explore problems by modeling them, to find solutions through rapid, 

easily tweaked digital experimentation (which to echo Richard Feynman should never come 

to completely replace good old fashion empiricism with real material, prima facia  [58].)

But the most important question, o f course, is how does LogoRhythms perform with 

real kids and other neophyte computer users? Logo has long proven itself and continues 

to exist commercially in LCSI’s Microworlds and in open source format via UCB Logo 

among others. Whether LogoRhythms is useful to its target audience remains to be seen 

and is a question now best put to the field.
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Appendix A 

AlphabetSynth Source Code

Below is the Logo source code for the AlphabetSynth application discussed in Chapter

A .l
;; qsort 
to sort :data

local [1ft rght pivot next]

if equal? 1 count data [ output data ] 
if equal? 0 count data [ output data ]

make "1ft [] 
make "rght []
make "pivot first (first data) 
make "1ft fput (first data) 1ft 
make "data butfirst data

repeat count data [
make "next first first data
if less? next pivot [ make "rght fput (first data) rght ] 
if equal? next pivot [ make "rght fput (first data) rght ] 
if less? pivot next [ make "1ft fput (first data) 1ft ] 
make "data butfirst data

]

make "1ft sort 1ft 
make "rght sort rght

output cons rght 1ft

end
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;; believe it or not, this doesn't seem to be part of UCB Logo 
to cons :listl :list2

if empty? Iist2 [ output listl ]

make "listl lput first list2 listl 
make "list2 butfirst list2 
make "listl cons listl list2

output listl

end

,■ ; from Harvey 
to tree :key :children 

local [ node ] 
output fput key children 

end

;; from Harvey 
to leaf :datum

output tree data [] 
end

;; from Harvey 
to btree :data

if empty? data [ output [] ] 
if empty? bf data [ output data ] 
output btreehelper (int (count data)/2) data [] 

end

;; from Harvey 
to btreehelper :c :in :out 

if equal? c 0 [
output tree (first in) (list (btree reverse out) (btree bf in))

]
output btreehelper (c-1) (bf in) (fput first in out) 

end

to synth

local [ wl w2 w3 freq ]
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;; add a combintion of sinusiods 
make "freq 440 
make "amp 1
make "wl sinewave freq 
make "i 2 
repeat 2 [

make "w2 sinewave freq * i
make "i i * 2
make "amp amp/l.4
make "w2 volume w2 amp
make "wl combinewaves list wl w2

]
make "w2 sinewave freq/2 
make "w2 volume w2 amp/2 
make "wl combinewaves list wl w2

;; add a combintion of trianglewaves 
make "freq 43 0 
make "amp .6
make "w2 trianglewave freq
make "w2 volume w2 amp
make "wl combinewaves list wl w2
make "i 2
repeat 2 [

make "w2 trianglewave freq * i
make "i i*2
make "amp amp/1.4
make "w2 volume w2 amp
make "wl combinewaves list wl w2

]
make "w2 trianglewave freq/2
make "w2 volume w2 amp/2
make "wl combinewaves list wl w2

make "n noise 1
make "n volume n .05
make "wl combinewaves list wl n

make "wl normalizewave wl 
make "wl evenwt wl

output wl 
end

to organ :base :fade 
make "wave synth
output organhelper (base * (1 / In 2)) :fade

end
:wave [ ] 0
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to organhelper :base :fade :wave :data :i 
local [ env note freq ]

make "env list [.9 25] lput :fade [0] 
make "freq (base * (power 2 i) * (In 2)) 
if less? 2048 freq [ output data ]

make "env list freq env
make "note lput env [soundwt :wave]
make "note list freq note

make "data fput note data
make "i i + 1/12

output organhelper base fade wave data i

end

to organkeys :base
make "base first :list.synth 
make "base base * (1 / In 2) 
make "c ascii readchar
output (base * (power 2 (:c - 97)/12) * (In 2)) 

end

to startsynth :func.synth :list.synth :func.getkey :list.getkey 
local [ freq lasttime deltatime loop cmd b ]

make "cmd []

make "b btree sort (apply :func.synth :list.synth)

;; looping has three states 0:off and clear, l:recording, 2:looping 
make "looping 0

forever [
make "key apply :func.getkey :list.getkey 

test equal? c 58
iffalse [ make "cmd last lookup :key b ] 
iftrue [

if equal? looping 2 [ 
make "looping 0

]
if equal? looping 1 [ 

make "looping 2 
3
if equal? looping 0 [
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make "lasttime time 
make "delta 0 

make "loop []
make "looping 1

]
]

if equal? looping 1 [
make "loop fput cmd :loop

make "delta (time - lasttime) 
make "lasttime time 
make "r [rest] 
make "r lput :delta r 

make "loop fput :r :loop
]
ifelse equal? looping 2 [ 

test empty? loop
iffalse [ forever [ playloop loop :wave ] ] 
make "looping 0

] [
test empty? cmd 
iffalse [

test equal? c 58 
iffalse [ run cmd ]

]
]

]

end

to playloop :data :wave 
test empty? :data 
iffalse [

run last :data
playloop butlast :data :wave

]
end

to lookup -.code :tree
output lookuphelper :code :tree [] 

end

to lookuphelper :code :btree :closest 
local [ next less more ]
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make "this getNodeKey :btree

if empty? :closest [make "closest getNode :btree ] 
if equal? :code :this [ output getNode :btree ] 
if isleaf? :btree [ output closest ]

ifelse less? :code :this [
test empty? getlessbranch :btree 
iffalse [

make "less getNodeKey getLessBranch :btree 
if updateclosest? :code :less first closest [ 

make "closest getNode getLessBranch :btree
]
test isleaf? getLessBranch :btree
iffalse [ make "closest lookuphelper :code getLessBranch :btree :clo

]
i rJ L

test empty? getmorebranch :btree 
iffalse [

make "more getNodeKey getMoreBranch :btree 
if updateclosest? :code :more first closest [ 

make "closest getNode getMoreBranch :btree
]
test isleaf? getMoreBranch :btree
iffalse [ make "closest lookuphelper :code getMoreBranch :btree :clo

]
]

output closest 
end

to updateclosest? :code :next :current
output less? abs (code - next) abs (code - current) 

end

to isleaf? :x
output less? count :x 2 

end

to abs :x
ifelse less? x 0 [ output minus x ] [ output x ]

end

to getNode :btree 
output first :btree 

end
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to getNodeKey :btree
output ffrst first :btree 

end

to getNodeValue :btree 
output last first :btree 

end

to getLessBranch :btree
output first butfirst :btree 

end

to getMoreBranch :btree 
output last :btree 

end

;; start the organ alphasynth 
load "synthdb.lg
startsynth [organ ?1 ?2] [220 128] [organkeys ?1] [220]
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