
www.manaraa.com

LogoRhythms: A Sound Synthesis and Computer Audition API
for the Open Source UCB Logo Interpreter

by

Aaron Hechmer
B.A. Hampshire College, 1994

A Thesis Submitted in Partial Fulfillment o f the Requirements
for the Degree of

M a s t e r o f S c i e n c e

in the Department of Computer Science

© Aaron Hechmer, 2006
University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part by
photocopy or other means, without the permission o f the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Library and
Archives C an ad a

Bibliotheque et
Archives C an ad a

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-18631-2
Our file Notre reference
ISBN: 978-0-494-18631-2

Direction du
Patrimoine d e I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SUPERVISORY COMMITTEE

LogoRhythms: A Sound Synthesis and Computer Audition API for the Open Source
UCB Logo Interpreter

by

Aaron Hechmer
B.A., Hampshire College, 1994

Supervisory Committee

Dr. George Tzanetakis, (Department of Computer Science and Music)______________
Supervisor

Dr. Daniel German, (Department of Computer Science)_________________________
Department Member

Dr. William Wadge, (Department of Computer Science)__________________________
Outside Member

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Supervisory Committee

Dr. George Tzanetakis, (Department of Computer Science and Music)_________________
Supervisor

Dr. Daniel German, (Department of Computer Science)_____________________________
Department Member

Dr. William Wadge, (Department o f Computer Science)_____________________________
Outside Member

ABSTRACT

This thesis describes the construction, form, purpose and motivation for

LogoRhythms, a sound synthesis and computer audition API intended to be used as a tool

in the teaching o f computer programming, computer science and associated skills.

LogoRhythms is built into Berkeley Logo (UCB Logo), a contemporary open source

Logo interpretter. In addition to serving as a user manual complete with program

description and code examples, this work documents an exercise in experimental

archaeology that traces the unfortunate shift in educational computing and personal

computing in general from an emphasis of ’computer literacy’ to one o f ’user-friendly.’

Arguments irj defense o f command-line and text based computing parallel those for

computing as a tool for creative expression and are made in three ways: historical

analysis, a new user-study and philosophical investigation. Programming is a widely

leamable skill and debugging a useful skill transcending a utility limited to computer

programs. Digital musical composition provides a perpetually renewable opportunity for

custom software, underscoring that programming is a creative endeavor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

iv

Table of Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vi

List of Figures vii

List of Abbreviations viii

Acknowledgement ix

1 LogoRhythms Introduction 1

1.1 Opening the B o x ... 1

1.2 Chapter Overview s....................... 5

1.3 A Brief Background on M otivations... 6

2 A Tour of the LogoRhythms API 9

2.1 C onstruction .. 10

2.2 A P I .. 12

2.2.1 A c tiv a tin g ... 12

2.2.2 Procedures that Use a W av etab le .. 13

2.2.3 Procedures that Use Logo Arrays to Hold Audio C l ip s 15

2.2.4 Miscellaneous Procedures.. 19

2.3 Short Examples: Audio in a Functional Paradigm .. 21

2.4 Sum m ary.. 26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

V

Table of Contents_______________________________________ __________________

3 Computer Science LogoRhythms Style 28

3.1 Extending Harvey’s Programming P rim er.. 28

3.1.1 Binary Trees with AlphabetSynth... 29

3.1.2 Hash Tables and FFTs with SampleSynth...37

4 Evolution and Obfuscation:

A Case for Studying Antiques, Bicycles and Programming Languages 44

4.1 Introduction...44

4.2 Mechanical Transparency on Large and Tiny M achines.................................... 45

4.3 Historical T ransparency ... 57

4.3.1 The Designer’s Access to the Turning Points of Ideas57

4.3.2 Early Themes in HCI .. 59

4.3.3 Changing Fashions in H C I.. 60

4.4 Literacy with Machines, Literacy of Machines ..70

4.5 Performance, Good Magic Tricks and Transparency .. 73

5 Flowers for Algorithm 76

5.1 P re fa c e .. 76

5.2 E ssa y ... 77

6 Conclusion (Open ended of course) 102

Bibliography 107

Appendix A AlphabetSynth Source Code 111

A.1 I ll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

vi

List of Tables

4.1 Comparison of Programming themed (P) and Graphic Design related (G)

papers for the first 15 years of the ACM’s CHI conference along with the

most recent year. B are papers with both programming and graphic design

themes... 62

4.2 Representative themes corresponding to Table 1: 1980 - 1989 63

4.3 Representative themes corresponding to Table 1: 1990 - 1996 64

4.4 Representative themes corresponding to Table 1: 2005 65

4.5 Occurrence of Errors in Student Drawings of Application Icons.................... 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

vii

List of Figures

1.1 A Four Part Harmony Program in M A X /M SP.. 3

2.1 Sinewave drawn in LogoRhythms ... 20

4.1 The Programming Interface for an Early Buchla S yn thesizer..................... 52

4.2 The wooden Laufmaschine from which the bicycle has descended 55

4.3 More moving parts- the mechanisms are still mostly exposed56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Abbreviations

CHI - Computer-Human Interaction/Interface

FFT - Fast Fourier Transform

GUI - Graphical User Interface

HCI - Human-Computer Interaction/Interface

JPF - Just-Plain-Folk, ie. not institutionally trained

MIDI - Musical Instrument Digital Interface

UCB Logo - University of California at Berkeley Logo

WYSIWYG - What You See Is What You Get

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Acknowledgement

Thanks to Adam Tindale for the MAX/MSP patch in Figure 1.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1

LogoRhythms Introduction

1.1 Opening the Box

LogoRhythms is an audio synthesis, computer audition API built into U.C Berkeley Logo,

an open source Logo interpreter. LogoRhythms adds sonic functionality to a language

with a rich tradition in the teaching o f computer programming and problem solving, even

with primary school students. Writing programs that draw pictures via turtle graphics has

always been a Logo mainstay application area [2]. With LogoRhythms, a program may

produce both visual and musical output, underscoring a relationship o f math and art and

that computer programming is a creative opportunity.

Early versions o f Logo were short on audio functionality, in part because hardware was

lacking. Sometimes a function such as “tone” or “play” was included that enabled the ma

chine to beep at a frequency specified as a parameter. Contemporary Logo implementations

such as LCSI’s Microworlds have far more advanced multimedia libraries [3], This func

tionality, however, often focuses on high level manipulations such as using MIDI (Musical

Instrument Digital Interface) to control a built-in synthesizer. Logo allows one to oper

ate the computer at a fairly low level, at least low level compared to typical desktop GUI

(Graphical User Interface) type applications. Analogously, LogoRhythms concentrates on

low level audio manipulation, ie. manipulating arrays o f audio data to build wavetables

which in turn can be layered into compositions using programming devices such as proce

dures and recursion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1.1 Opening the Box 2

One m ight categorize the software most frequently used by computer musicians is into

three types: graphical applications such as sound editors that often build their interfaces

around an oscilloscope window showing waveform or spectrum, visual programming lan

guages where functions are represented as graphical objects with pipes connecting them

and, finally, traditional high-level typed-text languages.

Sound manipulation applications with well developed graphical interfaces run the gamut.

Examples include: Snd, an open source, freely available sound editor from Stanford’s

CCRMA based on the emacs interface, including extendibility via Scheme (a Lisp dia

log); the widely used Audacity; and perhaps topping the spectrum, DigiDesign’s ProTools,

a feature rich sound editor used in professional studios for mixing and final editing. When

using these software tools, one almost always starts with some sound data, either recorded

or generated elsewhere. The interfaces usually allow and memory management designed

for work with many minutes o f audio sampled at 44.1 kHz or higher. Perhaps their greatest

application is in mixing and arranging songs, though they are certainly usable to create

short, novel audio snippets that, for instance, could be used as a wavetable in a synthesizer

actuated by a MIDI enabled device such as a piano like keyboard. Functions such as fil

ters and frequency transforms, usually FFT (Fast Fourier Transform), are often available.

While filter parameters are configurable, they are not languages in which one would write

a new filter from scratch nor do they tend to lend themselves to scripting or batch pro

cessing. W hile excellent for their task o f audio manipulation and a good aid for teaching

the physical principals o f sound, they are not flexible programming tools. Musicians look

ing for programming tools in which to “code” sound synthesis are often drawn to a visual

programming language, most likely either MAX/MSP or Pure Data (PD), an open source

language idiomatically similar to MAX/MSP and maintained by one o f M AX’s creators,

Miller Puckette [4] [5].

The programming environment, when first started, looks very much like the blank

screen o f a text editor, a clean slate waiting to be filled. However, the program instruc

tions are laid out on the screen in an even less linear way than most structured text based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1.1 Opening the Box 3

Figure 1.1. A Four Part Harmony Program in MAX/MSP

languages would be in a text editor window, Figure 1.1. Procedures, say for generating

a sinusoid or the operation o f addition, are drawn onto the screen inside of a box. The

procedure names themselves can be chosen from a list o f available primitives, somewhat

freeing the programmer from needing to memorize the language’s lexicon as well as fa

cilitating exploration o f available functions and their effects (“hmmm... I tried a sin, now

what does this cos thing do?”) Other boxes may contain numeric constants, have special

functions such as toggle switches or a “bang” that sends a signal to trigger an event or

display graphical information such as waveforms (an example o f output) or envelopes (an

example o f input). Such boxed procedures are often functions in the sense o f taking one

or more arguments and returning some output. Graphically, these input parameters and

output return values come and go to other boxes connected by a line, such as a box rep

resenting a digital-to-audio converter, ie. for play through the soundcard. For instance,

addition takes two input lines and provides a single output line. The graphical metaphor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1.1 Opening the Box 4

of programming as plumbing system, a schematic of faucets, pipes and sinks, has long

proven itself via MAX/MSP and PD. Programs created this way are used in music heard

on the radio, movie theaters, clubs, concert halls and public art installations and have been

extended to applications such as controlling theater lighting; MAX programs have been

written that take data read off external sensors such as anemometers used in a public art

display in Seattle Public Library’s Ballard Branch, processing the numbers as part o f algo

rithmically driven musical composition. From the point o f view of enabling musicians who

may know no other programming language, PD and MAX/MSP are successful. Students

without formal computer science training or knowledge in other programming languages

regularly create nontrivial programs (known as patches in MAX/MSP and PD argot) that

perform synthesis, time-frequency transformations, event handling and filtering. However

this idiom is not the technology of choice for more general programming tasks: device

drivers, web servers, 3D simulations o f submarine telemetry are not written in this idiom.

MAX/MSP cannot be written in MAX/MSP. Indeed MAX/MSP and PD offer hooks for

extension via C/C++ for bolder explorations and customizations.

It is into this context that we introduce LogoRhythms, a music synthesis, computer

audition API built on top o f the functional flavored, typed-text paradigm o f the UC Berkeley

Logo interpreter. Logo and LogoRhythms are typed-text programming languages and as

such creations are closer in relation to applications such as Lisp, C, Java or any other

similar programming language than to applications such as word processors, spreadsheets

or graphical musical editing software. Yet, Logo was created for general consumption and

not just highly specialized gurus. Pragmatically, LogoRhythms has been created to teach

programming through music. Theoretically, LogoRhythms has been created to provide a

focal point in a debate comparing “user-friendly” against “computer literacy.” Does user-

friendly offer convenience at the expense o f our own intelligence? W hile this is a clear

question the answer is murky, awash in many shades of gray. For instance, is it worthwhile

to leam underlying mechanisms if those details appear trivial to the task at hand? Are

they not just an extra burden and distraction? In a marketplace where software companies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1.2 Chapter Overviews 5

will be more than happy to do for you at a price, the question is worthwhile to ask despite

its ambiguities. While LogoRhythms is offered as an educational tool for the neophyte to

explore computer programming, my advocacy will strongly favor computer literacy over

user-friendliness.

1.2 Chapter Overviews

This thesis document introduces the LogoRhythms API and its construction, presents Lo

goRhythms as a vehicle for teaching programming concepts to neophyte programmers and

provides a historical and philosophical context into which to consider the debate between

user-friendly and computer literacy that spawned languages like Logo and Smalltalk. The

document concludes, as is customary, with suggestions for additional directions and re

search beyond that contained here.

The chapters breakdown as follows:

• Chapter 2: A Tour o f the LogoRhythms API discusses the construction o f LogoRhythms,

the layout of the API including some short example programs and the limitations of

UCB Logo and LogoRhthyms.

• Chapter 3: Computer Science LogoRhythms Style follows in the spirit o f Brian Har

vey’s “Computer Science Logo Style” [6], The LogoRhythms API is used in two

non-trivial synthesizer applications. The examples demonstrate an introduction to

binary search trees and hash functions in an audio application.

• Chapter 4: Evolution and Obfuscation: A Case fo r Studying Antiques, Bicycles and

Programming Languages places LogoRhythms in historical context and argues why

examining this language is a useful exercise in experimental archeology. Every year

more and more libraries are available to the programmer. While undoubtedly useful

for productivity, do these libraries add layers of indirection that hide the roots of the

computer’s operation, roots that are in themselves really quite simple?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1.3 A Brief Background on Motivations 6

• Chapter 5: Flowers fo r Algorithm examines ties between intuition and mathematics

in a slightly different manner than usually offered by mathematicians and computer

scientists, highlighting differences but focusing on the similarities. Writings from

computer science and mathematics on intuition, proof, the aesthetic in mathematical

discovery and constructionist learning are juxtaposed with phenomenological expla

nations o f the embodied mind and sense borrowed from art criticism. This diversion

hopes to provide thought on what is literacy and how design o f artifacts is related to

literacy, among other thoughts provoked.

• Chapter 6: Conclusion (Open ended o f course) summarizes the implications of con

straints and failure protection in HCI design against the goal o f mechanistic revela

tion. As is customary, the conclusion makes some suggestions for further research.

1.3 A Brief Background on Motivations

This API came about from an immediate need. In the fall o f 20 0 4 ,1 volunteered to teach

an introductory programming class at the Honomu Computer Resource Center on the Big

Island of Hawai’i. The center, in the town where I was currently living, was funded by

the MacAurthur Foundation as one means to try to liven up the economy in an area hit

hard by the departure o f the sugar industry in the early 1990’s. I wanted the class to focus

on real programming in spirit and syntax, but I thought focusing on art and music related

applications would make the after-school program more enticing while best matching my

own interests in new media. The language I was to use had to work on a wide selection of

equipment, ie. Apple OS9, MS Windows and Linux operating systems. The best choices,

I thought, were UCB Logo or Squeak Smalltalk. Squeak comes with an excellent IDE,

as has been the tradition in Smalltalk. However, I wanted something that focused on the

text and the command-line and subsequently choose the more striped-down Logo inter-

-preter 11CB I ,ogo’s drawback was lack o f audio functionality. LogoRhythms nrovides that

functionality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1.3 A Brief Background on Motivations 7

Unfortunately, the class never materialized. But, it was not the center’s directors’ skep

ticism that proved the road block, although I was told, “I think you’re trying to do too

much, we had someone do a program last year and everyone was getting comfortable with

the mouse by the end.” When Logo was introduced, it’s proponents at MIT successfully

took it into schools where kids had had little or no previous exposure to computers (being

the 1970’s few kids did) [2] [7], My failure was more pragmatic, the center lost its funding

and closed its doors just prior to the class. Similarly, I tried pitching the idea among the

local public primary schools. The principals I spoke with were enthusiastic. But when it

came to actually assigning resources- a classroom with computers and an alloted tim e- the

simple task was overwhelming. Overwhelming because these schools are chaffing under

the US Government’s “No Child Left Behind” requirements that leaves little time but to

teach to the tests now required by the state and federal governments. 1

I view the lack o f field testing as my biggest disappointment for this thesis, creating a

noticeable gap in the following pages. The schools, however, are bureaucratic institutes,

more than somewhat cold to outsiders. ’Field testing’ is best carried out by teachers or

education students already in the fold o f the institutions. For my part, I have kept the new

code as close as possible to UCB Logo. LogoRhythms is open source and that it strives

Euphem istically referred to as “No School Left Standing” by many educators, the federal program is

viewed as a back-handed effort to discredit public education (and hence divert support to private institutions)

and subsequently privatize what’s left in its wake. By September 2005, for instance, over fifty two o f two

hundred and eighty public schools in Hawai’i alone failed to meet the testing criteria set by the government

[8], Upon failure, the local school board looses control and the state steps in. And what does the state do?

Outside firms are contracted to restructure the offending school with bids in the range o f $US250,000 per

school. In contrast to Logo or Smalltalk, this restructuring involves quite a different and insidious approach

to the use o f software in the school system. Companies such ETS Pullium, a subsidiary o f Educational

Testing Services and EduSoft, a subsidiary o f Houghton Mifflin offer enterprise level computer systems to

the school. Databases contain the tests, the drills and the records o f student’s performance. In a PeopleSoft-

esque twist, even letters to parents can be automatically generated and dispatched. Meanwhile, students sit

at web interfaces ru nn ing through the drills with apparen tly scant regard for conflicts o f interest such as ETS

writing both the standardized tests and training software.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1.3 A Brief Background on Motivations 8

to be available cross-platform and to as wide an audience as possible, although develop

ment has been carried out on a Linux based platform. Sometimes this comes at the price

o f performance and functionality, but not in the core functionality o f providing a stomping

ground to explore computer programming and computer science concepts. Therefore, my

efforts are, for the moment, limited to an engineering effort and the philosophical justifica

tion behind the design decisions. LogoRhythms is provided free to the community with the

hope that someone with stronger ties to the educational institution will find it useful.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2

A Tour of the LogoRhythms API

The LogoRhythms API is mostly consists o f primitives written directly into the UCB Logo

interpreter using the C language. Some procedures are offered as part o f UCB Logo’s

logolib, a library of procedures that appear to be primitives but are written in the Logo

language. Functionally, the procedures can be divided into those that produce sound by

simply reading through an array o f floats until the final index is reached and wavetables,

ie. short arrays that are read repeatedly as loops. It is not only possible but encouraged

to create sounds using the array manipulation procedures and then use those arrays, or

snippets of them, as wavetables.

This is an API with a fair amount o f redundancy. For instance, the s o u n d and s o u n d w t

procedures are superfluous to the h a rm o n y and h a rm o n y w t procedures. However, in

keeping with the early design philosophy o f Logo, the API is built to allow one to move

from simple operations like t o n e that uses a sinusoid wavetable and a predefined ampli

tude envelope to h a rm o n y w t that allows the programmer to specify an arbitrary wavetable,

multiple frequencies and envelopes. The format for arguments is conserved across all

wavetable functions and is either frequency, amplitude and duration or frequency and then

a list pair o f amplitude and duration. Not only should consistency in argument format help

avoid confusion but allows for a single procedure to return a list o f arguments usable in a

variety o f different wavetable procedures.

In this chapter, I will briefly discuss the construction o f LogoRhythms before elaborat

ing on the API itself. Several short examples are given as suggestions for its use as well as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.1 Construction 10

to highlight syntactical possibilities o f programming in a functional style.

2.1 Construction

LogoRhythms relies heavily on two outside, open source pieces o f software. The first

is the UCB Logo interpreter maintained by Brian Harvey and colleagues at UC Berke

ley [9]. UCB Logo provides the framework and the parsing functionality within which

LogoRhythms is implemented. O f course, UCB Logo also provides an entire computer

language with which to write many types o f programs. The second piece o f indispensable

software is the PortAudio Portable Real-Time Audio Library maintained by Ross Bencina,

Phil Burk and others [10]. PortAudio offers a C language audio API usable across most of

the major platforms including Apple OSs, MS Windows and Linux/Unix. This API frees

the application writer from needing to worry about sound card or platform specific nuances

at the application level. PortAudio provides only the interface to the sound card and does

not provide the synthesis or audition functionality that is organic to LogoRhythms.

LogoRhythms was initially implemented using version 5.3 o f UCB Logo. Although re

leases of UCB Logo are infrequent, version 5.5 has recently been released. This document

refers to LogoRhythms implemented in UCB Logo version 5.5. To facilitate merging, an

effort was made to limit modifications o f UCB Logo code. In addition to the UCB Logo

makefile, modifications occur mostly in one o f two places: globals.h and init.c. Both of

these modifications involve making the names o f the new primitives available to the inter

preter. In globals.h the prototypes o f the LogoRhythms procedures are given while init.c

contains a multidimensional array named p r im s that lists the names o f the logo primi

tives, the number o f arguments each primitive accepts and the name o f the corresponding

C procedure to invoke within the interpreter. Unix specific thread code has been added

to eval.c and is conditionally compiled. PortAudio files remain separate from interpreter

code. The remainder o f LogoRhythms is contained in separate files as follows:

• sound.h: Here one will find constant declarations, prototypes and two abstract data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.1 Construction 11

types, EnvelopeData and OscillatorData. These new types are intended to be used

as linked lists, ie. one EnvelopeData instance may point to another EnvelopeData

instance, a necessary construction when building harmonies.

• wave.c: Source code for functions operating on arrays o f data are mostly given here.

In the LogoRhythms’s argot, wave refers to a Logo array o f floats; although, to the

Logo programmer there is a simple number type that does not distinguish between

floats and integers.

• sound.c: Procedures relying on wavetables are all found in sound.c. This includes a

number o f procedures that take arbitrary arrays o f floats. The array argument is then

played as a wavetable, ie. looped repeatedly.

• fft.c: Fast Fourier transforms between the time and frequency domains are kept

here. This code is really just slightly modified versions o f those found in Numer

ical Recipes [11]. The LogoRhythms’s implementations use Logo data structures but

the logic otherwise remains the same.

• audiofilter.c: Strictly speaking, this is not an official part o f the LogoRhythms API.

This file contains code for a biquad filter based on the implementation in Perry

Cook’s STK. The corresponding Logo primitive, F IL T E R W A V E , is not further dis

cussed in this document and is not presently considered a formal part of the API.

There are two significant downsides from limiting modifications to native UCB Logo

code. First, the limitation stops one from making improvements they wish existed. For

instance, turtle graphics is kept simple in order to maintain cross-platform portability. Win

dow redrawing behavior ends up being a bit quirky on Linux as well as lacking a method

to add text to graphical output- a serious flaw when creating graphs o f sound waves where

one would like to keep track o f amplitude and sample number. Making these improve

ments are important to LogoRhythms but presently beyond its scope. Second, all Logo

datatypes are under the covers, kept in a massive structure called a NODE defined in the

struct lo g o _ n o d e , a type regularly used in both linked lists and graphs. The lists and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2 API 12

arrays, even arrays o f floating point numbers defining audio data, are in fact lists o f NODE.
In places this affects a significant performance penalty. To reiterate, LogoRhythms pur

ports to be useful in teaching programming through sound. If one is seeking an optimally

performing real-time audio API, this is likely not it.

The UCB Logo NODE does provide several advantages. First, it provides type checking

functionality and new primitives which use it, which is all new primitives, immediately

have access to the parser’s error checking. Secondly, Logo is a descendant o f Lisp and

other than a number type, the list is the predominant data structure. Similar to Lisp, lists

o f commands can be executed or even used as anonymous functions. Even Logo’s arrays

really are little different in either operation or implementation from Logo’s lists: both use

NODE. The Logo interpreter has capitalized on the relation with Lisp by providing C macros

such as c o n s , c a r and c d r with which to operate on lists o f NODE within the C code.

Unfortunately, this conservation o f idiom only goes so far and semantics such as c a a d d d r

is not possible as it is in a Lisp interpreter such as Scheme.

2.2 API

The following is taken from the user manual for LogoRhythms found in a file called

“SOUNDAPI” in the directory where UCB Logo has been unrolled and built. Logo is

case insensitive and mixed cases will be found for the same command in the code exam

ples below, ie. make, mAke and MAKE all reference the same primitive. The ubiquitous

mAke is the assignment function; for instance, MakE "a siNewAVe 22 0 assigns an

array o f floats representing one sinusoidal cycle to the variable a.

2.2.1 Activating

SOUNDON
Open a stream to the audio device. In other words, this needs to be called before using

any sound producing method described here (except TONE). SOUNDON is sort o f an audio

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2 API 13

equivalent to PENDOWN in turtle graphics. The sound is on by default.

SOUNDOFF
The opposite o f SOUNDON.

2.2.2 Procedures that Use a Wavetable

TONE f r e q a m p l i t u d e m sec

Make a sine wave tone with a fixed envelope. This function will call SOUNDON i f necessary.

TONE will output to the audio card, ie. it should make a noise:

ex. TONE 220 .9 1000

SOUND f r e q [l i s t o f l i s t s d e s c r i b i n g e n v e l o p e]

The audio is still a simple sine wave. However, the envelope can be specified as a list of

value pairs. The first value gives the amplitude (0 to 1) and the second value the number of

milliseconds to reach that amplitude (changing linearly).

ex. SOUND 220 [[.9 10] [0 800]]

This will produce a sine wave with frequency o f 220Hz that reaches an amplitude o f .9

(90% of full volume) in 10 msec before decaying linearly to silence over 800 msec.

HARMONY [l i s t o f [f r e q [l i s t o f l i s t s d e s c r i b i n g e n v e l o p e]]]

HARMONY extends SOUND. Sine wave oscillators can be combined, each using a frequency

and envelope description similar to that of SOUND.

ex. MAKE "a LIST 220 [[.9 10] [0 990]]
MAKE "b LIST 440 [[.4 10] [0 660]]
HARMONY LIST a b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2 API 14

REST msec

Pause for a duration given in milliseconds.

TONEWT w a ve^ a r r a y [f r e q u e n c y a m p l i t u d e msec]

This function is very similar to TONE. Here one may specify an arbitrary array to use as

the wavetable.

ex. make "a sinewave 22 0
tonewt a [220 .9 1000]

SOUNDWT w a ve^ array [f r e q [l i s t o f l i s t s d e s c r i b i n g e n v e l o p e]]

Similar to SOUND, SOUNDWT provides a finer level o f control in defining an amplitude en

velope.

ex. make "a squarewave 22 0
soundwt a [220 [[.9 1000]]]

HARMONYWT w a v e . a r r a y [l i s t s o f [f r e q [l i s t s d e s c r i b i n g e n v e l o p e]]]

HARMONYWT provides the finest level o f control over wavetables. It operates similarly to

its sinusoidal cousin HARMONY. Note that the same wavetable, given by wavearray, will be

used for all frequencies.

ex. make "a trianglewave 220
harmonywt a [[220 [[.9 1000]]]

[440 [[.9 1000]]]]

SETTIME e n v e l o p e b a s e - t i m e

SETTIME is essentially a normalizing function implemented as a library procedure. SOUND

and HARMONY functions all use a list o f amplitude and duration pairs such as [[.9 50] [0

950]]. SETTIME will take such a list and normalize it using baseJime as a denominator.

Its intention is to allow many different envelopes to be easily forced into the same time

signature.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2 API 15

ex. make "new_envelope settime [[.9 50] [0 950]] 500

Here, " n e w .e n v e lo p e is given the new values o f [[.9 25] [0 475]] so that the durations

sum to 500.

2.2.3 Procedures that Use Logo Arrays to Hold Audio Clips

SINEWAVE f r e q

Generate one cycle o f sine wave values at the specified frequency.

ex. MAKE "wave SINEWAVE 22 0

TRIANGLEWAVE f r e q

Generate one cycle o f triangle wave values at the specified frequency.

ex. MAKE "wave TRIANGLEWAVE 22 0

SQUAREWAVE f r e q

Generate one cycle o f square wave values at the specified frequency.

ex. MAKE "wave SQUAREWAVE 220

NOISE msec

Generate msec milliseconds o f noise:)

ex. MAKE "wave NOISE 1000

PLAYWAVE w a v e - a r r a y

Play, ie. send the data to the speakers, the clip specified in the wave_array argument.

Playback occurs at 44 .1kHz, give or take the processor’s ability to maintain that rate.

ex. PLAYWAVE wave

COPYWAVE w a v e . a r r a y n u m -cop ie s

Make num_copies number o f copies of wave_array. So, if wave_array has a COUNT of 800,

COPYWAVE w a v e _ a r r a y 2 will return a new array of COUNT 1600. The following

example should produce (more or less) one second of a 220Hz sine wave.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2 API 16

ex. MAKE "a SINEWAVE 220
MAKE "a COPYWAVE a 22 0

WAVEENVELOPE w a v e -a r r a y [e n v e lo p e s i m i l a r t o t h a t o f SOUND f u n c t i o n]

This can be used to add an amplitude envelope to a sound clip (ie. what I ’ve been calling a

wave array). The form of the argument is very similar to that for SOUND.

ex. MAKE "a SINEWAVE 22 0
MAKE "a COPYWAVE a 220
MAKE "a WAVEENVELOPE a [[.9 50] [0 950]]

COMBINEWAVES [w a v e . l wave-2 . . . wavecn]

This function will combine its wave arguments into a new wave array with a COUNT equal

to that of the longest o f the arguments. The shorter arguments will simply be repeated as

necessary to fill the space. Amplitudes are normalized automatically.

ex. MAKE "a SINEWAVE 220
MAKE "a COPYWAVE a 220
MAKE "b SINEWAVE 440
MAKE "b COPYWAVE b 440
MAKE "wave COMBINEWAVES

ADDWAVEAT wave-1 wave-2 m sec

This will insert wave_2 into wave_l at msec milliseconds after its start. I f msec hap

pens to fall after the end of wave.l, a silence will be played as necessary before wave_2
commences. As with COMBINEWAVES, amplitudes are normalized, which means that the

volume should be the same after addition as before.

CUTWAVE wave . a r r a y [s t a r t end]

Cuts a segment out o f the wave array argument starting at ’’start” samples until ’’end” sam

ples. One can use Logo’s COUNT function to query for the total length o f an array.

ex. MAKE "a SINEWAVE 22 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2 API 17

;; COUNT a shows its length to be 200 samples
MAKE "a CUTWAVE a [0 50]
MAKE "a COPYWAVE a 880

REVERSEARRAY w a v e -a r r a y

Returns a new array with the order o f indices reversed. REVERSEARRAY is implemented

as a Logo primitive for performance. Still, large arrays may be slow to reverse.

ex. MAKE "drum READAUDIO "drumhit
MAKE "reversed_array REVERSEARRAY "drumhit

REVERSEWAVE w a v e -a r r a y

Syntactically this is identical to REVERSEARRAY; however, it is implemented in Logo as

a library procedure. Although considerably slower, library procedures are more readily

available to the student as a code example.

FFT w a v e -a r r a y

Transforms via fast fourier transform w a v e - a r r a y from a time domain to a frequency

array zero-padding as necessary.

ex. MAKE "w COPYWAVE SINEWAVE 220 22 0
MAKE "wf FFT W

IFFT f r e q u e n c y - a r r a y

Transforms via fast fourier transform from the frequency domain to the time domain. Using

FFT followed by IFFT yields almost the same wave originally fed to the FFT.

ex. MAKE "w IFFT wf

NORMALIZEWAVE wave . a r r a y

Implemented as a library procedure, NORMALIZEWAVE will set the highest amplitude

in w a v e _ a r r a y to the max volume, adjusting all other values accordingly. This is par

ticularly useful if COMBINEWAVES has created a clipped signal. To further adjust the

volume, try the SCALEWAVE or VOLUME controls.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2 API 18

ex. MAKE "wave NORMALIZEWAVE wave

EVENWT w a v e -a r r a y

EVENWT is a library procedure intended to be used on wave arrays that will serve as wave

tables. Since a wave table array is potentially played many thousands o f times a second, it’s

useful if the first value and last value are nearly similar. Large differences may introduce a

clicking or buzz. EVENWT chops off the end o f the input w a v e _ a r r a y until the first and

last values are similar (but not necessarily identical). This does run the risk of clipping the

entire wave!

ex. MAKE "wt EVENWT wt

DOWNSAMPLE w a v e -a r r a y f a c t o r

This library procedure subsamples a wave array by the factor specified in the second ar

gument. It will return a smaller array (unless the factor is 1). In the example below, w2

contains half as many sample points as w l. Since LogoRhythms’s playback rate is fixed at

44 .1kHz, w2 will have a pitch twice that of w l.

ex. make "wl TRIANGLEWAVE 440
make "w2 DOWNSAMPLE wl 2

SCALEWAVE w a v e -a r r a y d e l t a

This library procedure will modify the amplitude o f wave_array by the factor delta.

ex. make "w COPYWAVE (SQUAREWAVE 440) 440\\
make "w_quiet SCALEWAVE w .5

VOLUME w a v e -a r r a y d e l t a

This library procedure is simply an alias of SCALEWAVE.
RECORDWAVE m sec

Will record msec o f audio into an array via the audio card’s audio to digital converter. O f

course, some sort o f analog sound capture or producing device needs to be plugged into the ■

audio-in, such as a microphone, electric guitar or tone generator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2 API 19

ex. MAKE "w RECORDWAVE 1000

DRAWWAVE wave

This function is implemented in logo as a library procedure. So one may view it’s code by

looking for the file ’drawwave’ in the logolib directory.

DRAWWAVE renders a drawing o f the wave into a turtle graphics window compressing

the time axis, by its best guess, to fit more or less across the width o f the window. All

sample points are accounted for to avoid any potential aliases due to subsampling. Note

that i f a new wave is drawn into the same window, it w ill also take up the whole width o f

the window but not necessarily have the same time axis scale, Figure ??.

ex. MAKE "w SINEWAVE 6 0
DRAWWAVE w

2.2.4 Miscellaneous Procedures

READAUDIO f i l e n a m e

Reads an audio file and returns an array o f the data. The file format is really just a subset

o f the Sun/NEXT .au format: stereo or mono 16bit linear at a 44.1kHz sampling rate.

This procedure will give a warning if the file type looks incorrect, but will read in the file

anyway. If you have trouble reading .au files, you may want to check its format and convert

it to the above specs using a program like sox.

ex. MAKE "w READAUDIO "cool_song.au
PLAYWAVE w

WRITEAUDIO f i l e n a m e wave

Write an array to disk. While this will write any Logo array to disk, it’s really meant to be

used with audio data. Because o f the quantization in converting to 16bit PCM data (from

the native floating point format), there’s no guarantee that the exact same numbers will be

read back in using READAUDIO as existed in the original array; they should, however, be

close enough for the ear. The format is Sun/NEXT .au. However, the .au suffix is optional.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2 API 20

Figure 2.1. Sinewave drawn in LogoRhythms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.3 Short Examples: Audio in a Functional Paradigm 21

ex. WRITEAUDIO "my_new_cool_song.au wave

BEATBOX [i n s t r u c t i o n l i s t] s c a l e

This library procedure acts as sort o f a bucket for all o f the sound producing procedures

such as tone, tonewt, sound, soundwt, harmony, harmonywt and playwave. The procedures

will simply be called in the order in which they appear in the instruction list supplied as the

first argument.

ex. make "wv readaudio "drumhit
make "beat [[playwave wv] [rest 100]

[playwave wv] [rest 100]
[tone 220 .6 500] [rest 100]]

beatbox beat 1

In this example, notice how every other instruction is a rest. The scale parameter will

adjust these rests causing the beat to speed up or slow down. For instance, a scale o f 2 will

cause the beat to be played twice as fast; a scale o f .5 will affect a beat half as fast.

2.3 Short Examples: Audio in a Functional Paradigm

LogoRhythms strives to be simple and the arguments’ forms may be consistent, but there’s

no escaping the lengthiness and complexity o f the required parameters. Lisp, Logo’s pro

genitor, is often criticized for the morass of parenthesis marking the start and end o f a

list confronting the programmer. Neophytes are commonly warned to never endeavor in

Lisp programming without an editor that will automatically match these parenthesis. Logo

cleans up some of this mess, but lists, denoted by brackets in Logo, are still core to the

interpreter’s operation. Lists have many advantages. They are similar to arrays except that

a single list may contain multiple data types and easily allows dynamic lengths, ie. ele

ments may be added without explicitly allocating additional memory for the list. Lists may

contain program instructions, are conducive to recursive programming, and, in Logo, may

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.3 Short Examples: Audio in a Functional Paradigm 22

even be accessed using an index (again similar to an array). Programmers already comfort

able with abstract data types such as C structs or the classes o f an object-oriented language

may wish that some of the arguments were contained in such a data structure. Compara

bly long and complex parameter lists are found in Nyquist, a much more advanced audio

language that uses Lisp syntax where Nyquist envelopes are also linear interpolations [12]

[13]. The function is specified (env tl t2 t4 11 12 13 dur) where t l , t2 and t4 specify

time segments and 11,12 and 13 durations (dur is optional and defaults to 1.0). The t4 pa

rameter describes the segments at the end o f the envelope while the missing t3 is inferred

thus freeing the user from keeping track of the total running length o f the segment. The

env procedure is a special form o f pwl procedure that specifies piecewise linear functions

and can be used for envelopes, glissando, filter specifications and more. The pwl function

takes a variable and potentially long list of arguments: (pwl tl 1112 12... In) . In a func

tional language such as Logo, encapsulation and higher order functions can help address

these messy arguments. Where C or C++ encapsulate data in a struct or class respectively,

Logo encapsulates only at the function level, but in a way that is much tighter by trying

to avoid global or class scoped variables. Several examples follow providing a demonstra

tion o f how the LogoRhythms API can be used paying close attention to cleaning up the

arguments via encapsulation and higher-order functions.

Let’s start with the following example creating a fourpart harmony o f sinusoids.

harmony [[440 [[.9 50] [0 450]]]
[880 [[.3 50] [0 375]]]
[220 [[.1 50] [0 450]]]
[660 [[.05 50] [0 450]]]]

The hard coded parameter is a mess! Thirty four brackets help separate lists nested four

levels deep.

Encapsulation, in a broad sense, refers to the containing, even hiding, of information

through scoping rules. Take for example the list that makes up the argument to HARMONY.
This list can simply be encapsulated inside of another function. The list data is local to

the second function and returned by it. O f course, it’s not hard extend the functionality of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.3 Short Examples: Audio in a Functional Paradigm 23

this second function such as adding parameters that modify the list to be returned. Here’s a

function called f o u r p a r t that will produce a list parameter for the HARMONY primitive.

to fourpart :freq
local [a]
make "a []
make "a fput list freq [[.9 '50] [0 450]] a
make "a fput list freq*2 [[.3 50] [0 375]] a
make "a fput list freq*0.5 [[-1 50] [0 450]] a
make "a fput list freq*3/2 [[.05 50] [0 450]] a
output a

end

Now the HARMONY function can be called using the information encapsulated in

f o u r p a r t , for example:

harmony fourpart 44 0

Ostensibly, this is a much clearer semantics. If the student programmer-musician also

implements f o u r p a r t , even better. This first example demonstrates function composition

o f the form f(g(x)) where f(x) = HARMONY g(x), g(x) = FOURPARTx and x = 440.

Templates are UCB Logo’s device to allow the use o f anonymous functions or, more

specifically, lists o f instructions. The real flexibility o f templates begins to be realized when

examining UCB Logo’s APPLY function. APPLY itself takes a function as its first argu

ment. The symbol “?” is called an explicit-slot and marks the parameters of the template

function. The code:

APPLY [? * ?] [4]

will produce the product 16. Returning to the harmony example, consider the following

procedure:

to sing :a.func :a.list
ifelse (empty? :a.list) []
[apply :a.func (list (first ra.list))
sing :a.func (butfirst a.list)]

end

This recursive procedure is very similar to map functions found in many functional

languages. Its first parameter is a template. The second parameter is a list of arguments to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.3 Short Examples: Audio in a Functional Paradigm 24

the anonymous function (ie. the template). It will recursively traverse over the list “a.list”

applying each value in the list to the anonymous function “a.func.” It differs from other

map functions in that nothing, such as a new list, is returned since it’s intended to be used

with an 10 affecting anonymous function. Our last code example uses t o s in g with the

previous harm ony f o u r p a r t demonstration to create a simple composition .

make "notes [440 494 554 587 659 739 830 880]
sing [harmony fourpart ?] notes

Do re mi fa so la ti do.

Using templates in this manner is similar to the use of lambda expressions in Lisp

and the semantical distilling demonstrated here with LogoRhythms can be analogously

accomplished using lambda expressions in a Lisp based language such as Nyquist

In this first example, the timing was left up to the definitions o f the envelopes. This

will always be true when using LogoRhythms’s wavetable relianf procedures. However,

templates of anonymous functions can simulate dynamic levels and time signatures o f staff

music.

First, several variables are created in the Logo workspace:
make ".base 1024

make "loud .9
make "normal .3
make "soft .1
make "silent 0

The " . b a s e variable provides the timing o f a single measure in milliseconds. It also

acts as a sort of global variable- Logo isn’t a strict functional language that would normally

completely avoid such scoping. Next, two wave arrays are created named buzz and breath.

make "buzz copywave squarewave 44 0 44 0
make "a copywave trianglewave 220 220

make "b noise 1000
make "b volume b .2
make "breath combinewaves list a b

The code snippet uses the v o lu m e procedure. Implemented as a logo library pro

cedure, it runs a bit slower than the alternative syntax of m ake "b w a v e e n v e lo p e b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.3 Short Examples: Audio in a Functional Paradigm 25

t [. 2 1 0 0 0]] , which is implemented as a primitive. However, v o lu m e provides seman

tic clarity and, in this example, the wave arrays b u z z and b r e a t h will only be created

once. The intention is to use the arrays with the to n e w t procedure. One would normally

think of a wavetable as a single period, or adequately long segment o f a non-repeating

waveform! The waves b u z z and b r e a t h in fact correspond to approximately one sec

ond of output. Therefore, when setting the frequency parameter in t o n e w t , 1 will simply

play the clip a single time; 2 will play the clip twice or twice the frequency. While this

doesn’t provide much control over frequency, for instance excluding partials, it simplifies

the semantics in the proceeding example. A more refined version is suggested later.

The next step is to create some procedures taking care of note durations. The following

two examples, h a l f and q u a r t e r , provide the general framework which would extend

to any duration one might want to name (sixteenth, triplet, etc...).

to half :func.tonewt :vol
composenote func.tonewt vol .base/2

end

to quarter :func.tonewt :vol
composenote func.tonewt vol .base/4

end

These procedures again make use o f templates and anonymous functions, ie. instruc

tion lists. The argument : f u n c . tonewt has been named to suggest that the instruction

list will contain the tonewt procedure. Composenote is a helper function that glues

together the argument for tonewt and then executes the command via apply.
to composenote :func.tonewt :vol :t

local [args]
make "args list fput 1 list vol t []
apply func.tonewt args

end

With this background work completed, the following syntax has been enabled:

whole [tonewt breath ?] normal
quarter [tonewt buzz ?] silent
half [tonewt buzz ?] soft
quarter [tonewt buzz ?] silent
sixteenth [tonewt breath ?] normal
quarter [tonewt buzz ?] silent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.4 Summary 26

The subjective assessment o f readability will be left to the reader. For example, were

this example being used in a programming class for fourth graders, a not unreasonable

expectation, the background functions such as q u a r t e r and c o m p o s e n o te can be pro

vided by the instructor if need be. This example could be made more flexible by using the

so u n d w t procedure and allowing the frequency and amplitude envelope to be specified

on a per call basis. To allow a wide range of frequencies, wavetable could be used in the

more traditional sense- as a short (one or a few cycles) o f the sound wave. The final syntax

could take many forms, but with little modification to the example above, the following

would be possible:

quartertone [soundwt buzz ?] [330 [[.9 50] [0 500]]]

A new function has been introduced, q u a r t e r t o n e . Ostensibly this would be a mod

ification of q u a r t e r . The absolute duration is given by the sum of the envelope segment

lengths, [[. 9 50] [0 5 0 0]] . The LogoRhythms logo library procedure s e t t im e is

useful in converting this duration to a relative length; see the API note above.

2.4 Summary

To summarize, the LogoRhythms API can roughly be split into procedures operating on ar

rays o f floating point numbers representing audio data and procedures that use wavetables.

Of course, wavetables are simply arrays o f floating point audio data, albeit usually just a

short segment representing one or a few cycles. Since many o f the procedures operating

on these wave arrays, for instance c o m b in e w a v e s , are really working on linked lists of

the NODE structure, they’re relatively slow. Manipulation o f arrays should occur ahead of

playback time with the actual execution of sound taking advantage o f previously composed

wave arrays. A student composer can create timbres using the wave array manipulating

procedures and then use those arrays as wavetables in the appropriate procedures.

From procedure to procedure, the design is graduated. Simple procedures such as t o n e

allow easy entry into the API for the complete beginner, ie. low floor. These procedures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.4 Summary 27

proceed to more complex and feature rich procedures such as h a rm o n y w t with some

overlap between features. Given the right parameters, H arm onyw t can produce the exact

same note as t o n e .

Lists lend themselves to powerful and elegant programming solutions such as recursion,

can be used as anonymous functions in the form of instruction lists as well as offering a

growable container o f mixed types. However, even given the effort to create clean, simple

procedure names, list arguments can be unwieldy. Relying on functional language features

such as templates and anonymous functions can greatly clean up syntax. Ideally, students

may advance from being provided helper functions like s i n g and q u a r t e r to using

anonymous functions and recursion in their own procedures.

In the next chapter, I will extend the examples above to demonstrate the introduction of

common computer science problems using audio based programs. Two synthesizers will

be built using binary search trees and hash look-up tables respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3

Computer Science LogoRhythms Style

3.1 Extending Harvey’s Programming Primer

The previous chapter introduced the LogoRhythms API and provided some short examples

o f how one might use its procedures. A combination o f carefully selected nomenclature

along with instruction lists passed as anonymous functions was employed to syntactically

approximate natural language. In this chapter, more moderately complicated applications

o f the LogoRhythms API is presented.

Brian Harvey’s Computer Science Logo Style Volume 3: Advanced Topics shows Logo

stretching its wings on topics such as artificial intelligence and compiler construction (a

Pascal compiler) and non-trivial data structures such as trees [6]. First, I ’ll extend Har

vey’s example of balanced binary trees, including it as a central component in a digital

synthesizer instrument. One might approach musical composition with LogoRhythms as a

programming problem, ie. a program and its logic will dictate what notes will be played

and when. Alternatively, performing the piece is simply a matter o f running the program.

The following example will allow a performer to use a LogoRhythms program to inter

actively perform music via the computer keyboard. In the second application, a different

sort o f instrument will be built, one that plays sampled music clips. For variety, a new

data structure will be used, the hash look-up table. For computer scientists reviewing this

document, these devices will be old familiar friends. For new programmers examining

LogoRhythms, they may be an introduction to widely used data structures. The following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 29

discussions assumes a basic understanding o f programming, not necessarily an expert level.

3.1.1 Binary Trees with AlphabetSynth

The requirements for the first synthesizer are straightforward. First, we should allow a

flexible mechanism for organizing a variety o f sounds that may use either wavetables or

sampled audio clips. Second, we need a mechanism by which the musician can select

what notes to play and when. The first requirement will be met with a combination of

balanced binary trees and anonymous functions. As for the instrument’s interface, let’s

use the closest at hand: the computer keyboard. O f course, in keeping with the tradition o f

computer software and musical groups, the program will also need a name: AlphabetSynth.

In a nutshell, a balanced binary tree will provide a structure for storing synthesizer com

mands. The node’s value, for instance, might be the base frequency o f the intended note or

perhaps the duration o f a percussive hit. The tree also provides a rapid indexing scheme to

speed searching out a note for a given key stroke.1 Harvey introduces binary trees with a

hardcoded example of telephone area codes and their respective cities. Here’s an abridged

version o f his data: [[202 WASHINGTON] [404 ATLANTA] [808 HONOLULU]
] . The data is given in a list of lists. While the tree will also be built using a list, this list

isn’t there yet. However, it should be noted that this first list has been numerically sorted by

area code. Using a sorted list will allow us to construct a balanced tree with a short recur

sive function and without using rotation functions. The final form of this simple tree would

be: [[404 ATLANTA] [[202 WASHINGTON]] [[808 HONOLULU]]] . Each

level o f the tree is a list o f length three. The first element is the node, the second element

a branch following the lesser value and the last element the branch following the greater

element. Without re-presenting Harvey’s code, his approach is simple. A pair o f proce

1This document’s first audience, the academics evaluating its content, are, o f course, intimately familiar

with balanced binary trees. However, others may want to explore a simpler version o f the data structure given

in Computer Science Logo Style Volume 3: Advanced Topics, particularly Chapter 3 “Algorithms and Data

Structures.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 30

dures named b a l a n c e and b a l a n c e l take an input list and find its middle, ie. a median

(or adjacent) value. The values to the left o f this value will fall on the lesser branch while

values to the right are greater. This process is then run recursively on each half o f the

subsequently shorter lists until all elements have been accounted for. In the code for Al

phabetSynth, found in Appendix A, I ’ve renamed b a l a n c e and b a l a n c e l , b t r e e and

b t r e e h e l p e r respectively.

Now, let’s translate Harvey’s area code data to something more in the spirit o f Alpha

betSynth. For instance [8 08 HONOLULU] might look like [440 [so u n d w t :w ave

[[. 9 50] [0 200]]] where 440 is the frequency in hertz (an A in this case) that will

serve as the node in the binary tree and HONOLULU becomes an instruction list that Alpha

betSynth can potentially execute via Logo’s r u n procedure. Similar to the list o f telephone

area codes, a list of s o u n d w t instruction lists are generated on the semitone starting with

a frequency that we’ll provide as a frequency.

But let’s put the binary tree list aside for the moment. S o u n d w t requires a wavetable

parameter. Creating that wavetable is the heart o f the synthesizer, as in sound synthesis,

and will be performed via additive synthesis using the LogoRhythms primitives for array

manipulation. FM synthesis is also a possibility and could be quickly implemented using

a subsampling factor on a carrier wave that was modulated via a second wave. Since real

time FM is not implemented at the level o f native C code, building an FM conditioned

array for use in the wavetable procedures would likely provide the best performance. The

additive synthesis used here simply sums waves, occurring in the procedure s y n th .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 31

to synth

local [wl w2 w3 freq]

;; add a combintion of sinusiods
make "freq 440
make "amp 1
make "wl sinewave freq
make "i 2
repeat 2 [

make "w2 sinewave freq * i
make 11 i i*2
make "amp amp/I.4
make "w2 volume w2 amp
make "wl combinewaves list wl w2

]
make "w2 sinewave freq/2
make "w2 volume w2 amp/2
make "wl combinewaves list wl w2

;; add a combintion of trianglewaves
make "freq 430
make "amp .6
make "w2 trianglewave freq
make "w2 volume w2 amp
make "wl combinewaves list wl w2
make "i 2
repeat 2 [

make "w2 trianglewave freq * i
make "i i * 2
make "amp amp/l.4
make "w2 volume w2 amp
make "wl combinewaves list wl w2

]
make "w2 trianglewave freq/2
make "w2 volume w2 amp/2
make "wl combinewaves list wl w2

make "n noise 1
make "n volume n .05
make "wl combinewaves list wl n

make "wl normalizewave wl
make "wl evenwt wl

output wl
end

This procedure might be thought o f as a sort of palette where waves are combined

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 32

at different amplitudes and frequencies until the musician-programmer is happy with the

timbre. For those new to additive synthesis, perhaps the trickiest part of the procedure is the

call to n o rm a l i z e - a slow function that first must find the largest value in the array and

then adjust all other values proportionally, ie. requiring two passes. This is an important

step, however, as the wave will otherwise be too large and clip when played, loosing the

nuances so carefully added through these many additions. Now it’s time to return to the list

o f notes with which to populate the binary tree, accomplished by the procedures o r g a n

and o r g a n h e l p e r . The notes are semitones.

to organ -.base :fade
make "wave synth
output organhelper (base * (1 / In 2)) :fade .-wave [] 0

end

to organhelper :base :fade :wave :data :i
local [env note freq]

make "env list [.9 25] lput :fade [0]
make "freq (base * (power 2 i) * (In 2))
if less? 2048 freq [output data]

make "env list freq env
make "note lput env [soundwt :wave]
make "note list freq note

make "data fput note data
make "i i + 1/12

output organhelper base fade wave data i

end

These procedures require two arguments. The first is a base frequency, which in fact

will be the lowest frequency. The second, a fade, describes the duration o f the note’s decay

in milliseconds. The procedures’ names are chosen to reflect the timbrel quality o f the wave

produced by s y n th . Therefore, a call to o r g a n will return a list from the base frequency

up to, in this rendering, 2048 in halftone steps. The list still isn’t a tree; it needs to be sorted

and then rearranged into a balanced binary tree. I ’ve already discussed Harvey’s balanc

ing procedures, named b t r e e and b t r e e h e l p e r in AlphabetSynth. Harvey, however,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 33

started with a hardcoded sorted list of area codes. AlphabetSynth includes a sorting proce

dure, s o r t , that is based on the well known qsort algorithm and is not further discussed

here. Additionally, a Lisp-like c o n s procedure is given for concatenating two lists. While,

it’s trivial to implement, its ubiquity across most functional languages makes its absence as

a primitive in UCB Logo surprising.

So to summarize, thus far w e’ve covered the following functionality:

• creation o f an array wavetable to use as the base timbre

• procedures that will create a list o f LogoRhythms sound generating commands where

each element is associated with a frequency on a 12 tone, semitone scale

• a procedure that sorts the list of commands by base frequency

• procedures- borrowed from Brian Harvey with some modification- that create a

(fairly) balanced binary tree using a sorted list as input

Now, let’s turn to the user-interface starting with the user and working back into the

system and the binary tree data structure. The user is sitting at their computer. They will

tap a key and get a tone, ie. there’s a one to one mapping between pressing a key and a

note. Some o f the functionality will turn out to be generic for any possible synthesizer

trees we create for the AlphabetSynth while some will be specific to this first tree, the

list o f semitone organ sounds. These two functionalities will be broken into two separate

functions with generic functions being placed in a procedure named s t a r t s y n t h . Organ

specific functions will go into a procedure named o r g a n k e y s .

to organkeys :base
make "base first :list.synth
make "base base * (1 / In 2)
make "c ascii readchar
output (base * (power 2 (:c - 97)/12) * (In 2))

end

This procedure uses Logo’s r e a d c h a r procedure to handle the keyboard input. The

character is converted to its ascii code and this code is offset such that the character ’a ’

becomes the number 1, ’b ’ is 2, ’c ’ is 3, etc.... These codes can then be used to calculate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 34

a frequency. O rg a n k e y s then returns the frequency to the calling procedure to subse

quently be used to lookup up the audio command in the binary tree. Here’s a stripped down

version o f the procedure where the lookup will occur. Again, in Appendix A, one will find

a more feature rich version that will be discussed later.

to startsynth :func.synth :list.synth :func.getkey :list.getkey
local [freq cmd b]

make "cmd []
make "b btree sort (apply :func.synth :list.synth)

forever [
make "key apply :func.getkey :list.getkey
make "cmd last lookup :key b
run cmd

]

end

S t a r t s y n t h is designed very much like the examples in the last chapter. The ar

guments to s t a r t s y n t h are templates, aka anonymous functions or instruction lists.

Specifically, : f u n c . s y n t h and : 1 i s t . s y n t h will be the function and its arguments

respectively that generate the list o f synth timbres at different frequencies- in this example

o r g a n while : f u n c . g e t k e y and : l i s t . g e t k e y is the function and its arguments

respectively that map keyboard keys to lookup “keys” used to find commands in the bi

nary tree. S t a r t s y n t h uses the former to generate the binary tree. Next, it enters into

an infinite loop using Logo’s f o r e v e r procedure (all control structures are in fact pro

cedures that take an instruction list as an argument). Keyboard strokes are read, mapped

using : f u n c . g e t k e y template, queried for in the binary tree using lo o k u p and finally

the returned synth instruction list executed using Logo’s r u n procedure.

And what does this all look like on the Logo interpreter command prompt?
? startsynth [organ ?1 ?2] [220 128] [organkeys ?] [220]

Remember that the ’? ’ character marks the parameter slot in the template. In the case

o f o r g a n , ? l is the first parameter that maps to 220Hz and ?2 to the decay parameter

mapping to 128ms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 35

Every instrument has its limitations and this one’s no different. UCB Logo doesn’t cur

rently offer any threading mechanism. LogoRhythms introduces a basic thread procedure

on Linux/Unix platforms. Threads, however, are not used in these examples. Each instruc

tion list blocks the execution o f subsequent instruction lists. Therefore, notes cannot be

played concurrently. Additionally, the length o f each so u n d w t is fixed. If the duration

between two consecutively played notes is less than the duration o f the note itself, the mu

sician will experience a delay between their input and the feedback o f sound- an upsetting

o f the one-to-one correspondence between action and reaction.

Up to this point, I haven’t mentioned the lookup procedure for retrieving commands

from the binary tree. Searching binary trees is similarly covered in many other sources

including Harvey’s example upon which AlphabetSynth builds. However, the code pre

sented below for searching the tree does in fact deviate significantly from Harvey’s. First,

a number o f simple query and predicate procedures have been created such as isleaf?,
getLessBranch and getMoreBranch essentially as context appropriate aliases for

basic list manipulation functions like first. But the bulk o f the work is performed in

lookup and lookuphelper.
to lookup :code :tree

output lookuphelper :code :tree tl
end

to lookuphelper :code :btree :closest
local [next less more]

make "this getNodeKey :btree

if empty? :closest [make "closest getNode :btree]
if equal? :code :this [output getNode :btree]
if isleaf? :btree [output closest]

ifelse less? :code :this [
test empty? getlessbranch :btree
iffalse [

make "less getNodeKey getLessBranch :btree
if updateclosest? :code :less first closest [

make "closest getNode getLessBranch :btree
]
test isleaf? getLessBranch :btree

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer________________________________ 36

iffalse [
make "closest lookuphelper :code getLessBranch :btree :closest

]
]

] [
test empty? getmorebranch :btree
iffalse [

make "more getNodeKey getMoreBranch :btree
if updateclosest? :code :more first closest [

make "closest getNode getMoreBranch :btree
]
test isleaf? getMoreBranch :btree
iffalse [

make "closest lookuphelper :code getMoreBranch :btree : closest
]

]
]

output closest
end

I wish to make two comments about these procedures. First, while the strategy for

searching the tree is norm al- start at the root node and follow the branches left or right

as necessary until a match is found- if no exact match is found l o o k u p h e l p e r will

traverse the tree until it reaches a leaf. It will then return the closest match it has found

in that traversal. In this way a given query is always guaranteed to return a command

and, subsequently, a sound. Secondly, this is a subtly complicated procedure to debug

and understand. The code contains ten different conditionals nested three levels deep.

Furthermore, even short trees are hard to visualize as the lists they really are. Printing

the list to screen is o f marginal utility when a closing statement may contain five adjacent

parenthesis. Here’s how UCB Logo prints the binary tree for the first synth presented:

You don't say what to do with [[659.255113825739 [soundwt :wave
659.255113825739 []]]] [[369.994422711634 [soundwt :wave

..]]] [[277.182630976872 [............]] [[........] [...

879

.] I...]] [[.......] [............] [...]]] [[493
]] t [1 [] [. . .]] [[• - • •
.] [-.-]]]] [[1174.65907166963 [soundwt :wave [.
999999999999 [. . .]] [[] [.......
...] [............] [...]]] [[1567.981743927 [...
• • •] [• ■ • 1 [. . .]] [[] [...................

883301256124
] [■ • •

. . .]]]
.] [. . .]]
]]

[. . .]]]]]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 37

No matter how much syntactic sugar we might mix into the LogoRhythms batter, this

can be a hard function to debug. I took several hours to untwine the competing errors o f

several different syntax/logic errors, the output o f each confounding my understanding and

revealing o f the others (of course, I used a much simpler tree as test data in the debugging

process). This admission is made to temper expectations as I merrily proceed along ad

vocating Logo and LogoRhythms to neophyte programmers. Lookuphelper demands

concentration. A nice language may make it easier for a neophyte programmer to learn, but

that doesn’t always equate to it being trivial to learn. In my case, I had solid conceptual un

derstanding of the algorithm’s mechanism and was still left wrestling with implementation

longer than I wished. Furthermore, the same mechanisms that allow very terse and clean

code, particularly anonymous functions and recursion, can also make for some very dense

and obfuscate constructions.

3.1.2 Hash Tables and FFTs with SampleSynth

Building on the idea o f the AlphabetSynth, let’s create another synth, SampleSynth. Sam

pleSynth also uses the keyboard as the interface for playing a sound. Instead o f using syn

thesizer tones generated by adding together wave forms, each key will be associated with

a sample of recorded music. In general, LogoRhythms is designed to emphasize work

ing with simple mathematical waves like sinewaves and squarewaves and the idea that,

combined with envelopes, these simple building blocks can become any sound, at least in

theory. Here, however, samples o f recorded music are used to demonstrate what has been

called, computer audition, ie. using the computer to hear the sound. More precisely, the

computer is used to analyze the sound. In addition to changing the source o f the sound

from a synthesizer to samples, a different data structure is introduced for organizing the

sounds. The binary tree is replaced with a hash look-up table, discussed further below.

First, we’ll need some samples, at least twenty six or so to cover the alphabetic keys.

We could use twenty six different songs, but this approach creates a stylistic problem,

that a whole song is a very long and varied note, as well as a technical problem, that Lo-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 38

goRhythms stores the data as uncompressed data. Each array o f floats uses a considerable

amount o f memory. To create more abstract snippets and avoid any memory shortages,

SampleSynth uses very short samples o f a quarter second. Also, for the purpose o f the

example o f computer audition, it will be helpful if the samples sound different, particularly

in pitch. I ’ve selected two pieces of music, Permiteme sung by Celia Cruz and J.S. Bach’s

Toccata and Fugue in D Minor.

The actual chopping and separating o f the longer audio files permiteme.au and Toc-

cataandFugueinDMinor.au is done by the audio format manipulation program sox, com

monly found on many unix-like platforms including OSX and is not part of LogoRhythms.

Calls to sox can be run via a shell script where 250ms are cut from the audio file along

every five seconds o f its length.

#!/bin/bash
for ({i = 0 ; i< = 100; i + = 5)) ;
do

echo \${i} ;
sox permiteme.au celia\${i}.au trim \${i} 0.25
sox ToccataandFugueinDMinor.au bach\${i}.au trim \${i } 0.25

done

Each sample, or snippet, is written into a new .au file bearing the name celia__.au or

bach__.au where __ is a number indicating where the snippet was clipped in the original file.

With these snippets prepared, it’s time to move back to Logo code. The full code for this

example is included with LogoRhythms in the files samplesdb.lg. The next task is to get

the filenames o f the snippets into a list. It’s not impossible to read a directory’s contents in

UCB Logo, but it’s done using the SHELL procedure such as m ake ' ' f i l e s s h e l l

' ' I s which uses a unix specific command I s to list the file names. To make life simpler,

albeit less elegant or flexible, the snippet file names are hardcoded into the example file

samplesdb.lg and stored in a list named f i l e s .

make "files fput "samples/celia5.au files

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 39

make "files fput "samples/bach30.au files
make "files fput "samples/bach95.au files
make "files fput "samples/celia60.au files

In the Samples DB, each keystroke will play one sample. But which sample to play?

And how to associate a given sample with a given key? We’ll need to know something

about the sound that is the snippet. W hat sort o f attributes can we use when talking about

these snippets? We could use length. But, the snippets have all been chopped to 250ms.

We might say that some o f the snippets sound like classical organ music and the other

set like salsa. We might note that some o f the snippets have a higher tone or pitch that

others. It is in fact these two descriptions that interests us in building the Samples DB.

W hat sort o f instrument is being played and what is the predominate pitch o f the sample?

Ideally both of these question with an answer that can be expressed numerically. In the

AlphabetSynth we knew what the fundamental frequency o f each note because we created

the note around that frequency, it then being used to organize the notes within the binary

tree. The instrumentation, or timbre, and the pitches o f the Cruz and Bach samples are a

complex mix o f frequencies. SampleSynth will work in reverse from the approach used in

AlphabetSynth and instead start with the sound in the sample, then identifying a dominant

frequency with which to label it. To summarize:

1. identify all o f the frequencies associated with a snippet

2. select a single frequency from this frequency fingerprint that stands out

3. use the dominant, stand-out frequency to index the snippet in a hash look-up table

Here is the code that first runs when the the Samples DB is started:

print [making calculations]
make "db sort measurefrequency getaudiodata files
make "db listtoarray db

print [enter a key a to z]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 40

forever [
make "key ascii readchar

make "key hashfunc key count db
playwave last item key db

]

The first three lines create the database o f snippets. The rest o f the program is an end

less loop that takes input from the keyboard, looks up the associated sound snippet and then

plays the sound. The most exciting action, as far as mathematically describing the sound,

starts in the procedure m e a s u r e f r e q u e n c y .

to measurefrequency :audio
local [peak]

if empty? audio [output [}]

make "s fft first audio
make "peak peakdetector spectrum s

output fput (list peak first audio) measurefrequency butfirst audio

end

This procedure takes the audio snippet as an argument and then applies LogoRhythms’s

FFT procedure, a fast fourier transform. The transform that occurs is from time domain

to frequency domain. In the time domain, each sample is associated with an amplitude,

ie. volume. How much, how loud, is the sound at a given point in time? In the frequency

domain, our data can now tell us what frequencies are present and at what intensities at a

given window of time, an admittedly abstract notion since frequency requires time. So in

reality, it’s frequencies over a sliding window in time. If one plays the wave array returned

by an fft, it will probably sound like a lot o f static. LogoRhythms also provides an IF F T

procedure, inverse fast fourier transform, that will return the frequency domain data to

time domain data, sounding as expected when played through the speakers. While the fft

accomplishes the transformation, the result is a complex number. It would be easier to

think of the data in terms of how much of each frequency is represented and to think of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 41

those frequencies in terms o f cycles per unit time such as hertz, the same unit used for

arguments to procedures such as SINEWAVE. LogoRhythms provides a Logo library level

procedure called SPECTRUM that makes the conversion to the magnitude o f frequencies in

the samples expressed in hertz.

Finally, with the spectrum o f frequencies in hand as the output o f the SPECTRUM pro

cedure, a single dominant frequency is found using the SampleSynth’s p e a k d e t e c t o r

procedure. The peak detection strategy simply scans the data looking for the tallest peak.

One slight twist, however, is to not simply look for the tallest single sample, but bin con

secutive samples, done in the procedure g e tw in d o w v a lu e and then measure the tallest

bin. In this way, one can get a rough measurement not just o f the height o f a peak, but also

its width.

With the spectral analysis complete and a single frequency identified to characterize

each audio snippet, it’s time to get to the business o f organizing the snippets in a searchable

data structure, in this case a hash table.

A hash table is a data structure, usually an array, where the location o f a given piece of

data, say a number or some text, is related to the content of data. For instance, imagine an

array o f length 10 that will hold the numbers 1 through 10. So that we will immediately

know where the number 5 is located, it will always be placed in the fifth index o f the array.

O f course, this means that only one instance o f the number five may be stored. A slightly

more complicated hash table might be built to hold the letters A-Z where A will always

be in the first index, B in the second, C in the third and so on. This is also the case in

SampleSynth. The fft is performed with the data in a Logo list. The code m ake " db

l i s t t o a r r a y db converts the list o f snippets and the dominant frequencies used for

their labels into an array where members can be found with a numeric index. To find the

specific index, a hashing function is used. In the general case, the input o f the hashing

function may be a number, a reference or text. For instance a well known hashing function

returns the sum of ascii values for the characters in a string modulus the number of indices

in the hash table. The key calculated from this function will be unique and normalized to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 42

the size o f the array holding the key’s values.

The hashing function used here is even simpler. First the array holding the snippets is

sorted by the value o f its peak frequency. When the user types a key, SampleSynth obtains

the ascii value, a numeric value associated with a character, for instance an “a” has an ascii

value o f 97. This value is brought into range o f the array indices by subtracting 96. The

result is the array index holding the sample to be played. Here’s that explanation expressed

in Logo:

to hashfunc :key :length
local [idx]
make "idx 1

if less? 96 key [make "idx key - 96]

;; keep in bounds
if less? length idx [make "idx length - 1]
if less? idx 1 [make "idx 1]

output idx
end

Finally, once the snippet has been returned from from the hash table it is played with

the p la y w a v e procedure. Afterall, it is just a wave array o f sound data.

To summarize, this chapter has attempted to introduce two important data structure and

indexing-searching strategies widely used in computer science by presenting them in audio

applications build using LogoRhythms. The algorithmic topics take their context in two

different computer instruments, each using the computer keyboard to allow the musician to

actuate the sound.

AlphaSynth generates a tone based on a desired fundamental frequency. In other words,

one decides what pitch the tone will have and then embellishes color around that pitch

with varying combinations o f harmonics, partials and wave types like sinusoids or triangle

waves. The Samples DB works the other direction. Audio snippets are harvested from pre

recorded music. Using LogoRhythms’s FFT and SPECTRUM procedures a peak frequency

is associated with the snippet to be used as a lookup key in a hash table.

While one might be tempted to proclaim, ’Voila!,’ LogoRhythms is not intended to be a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1 Extending Harvey’s Programming Primer 43

final solution to anything. For sure, there are far better synthesizers available if one’s only

goal is performance. LogoRhythms is a user-friendly computing language. Compared to a

sound editor application, it can provide a low level entrance into application writing. Hav

ing a language is not enough! Dissatisfaction and a drive to tamper, a curiosity to dissect

and rearrange are also necessary. For starters, AlphaSynth and SampleDB can be tuned,

just like a musical instrument. One new to Logo, LogoRhythms or computer program

ming might start by changing the synthesizer in AlphaSynth, for instance with a different

combination o f waves added together in the s y n th . While a student-programmer may be

interested in extending the instruments, the data structures and algorithms transcend the

musical application presented here. The programs could be modified to fit other purposes

such as the exciting task o f indexing telephone numbers by area code, as suggested by

Harvey. Reuse and modification is key in the work-day aspect o f software engineering and

problem solving with computer applications. In that sense, the ability to modify, dissect,

break and extend provides a strong argument for open source frameworks in educational

computing. Learning something that’s hidden from view with intellectual property miser

liness and the intent that others cannot learn it or copy it should be regarded as anathema.

W hether with Logo or any other handy language, go forth, break and create.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4

Evolution and Obfuscation:

A Case for Studying Antiques, Bicycles

and Programming Languages

4.1 Introduction

Donald A. Norman, frequent contributer to the computer-human interaction literature and

former Apple Fellow, states that “good design” can be boiled down to four principles: (1)

visibility, (2) a good conceptual model, (3) good mappings and (4) feedback. The principles

are enumerated, along with seven measures for achieving them, on page fifty two o f The

Design o f Everyday Things [14].1 And yet on page one hundred and eighty five, Norman

describes an ideal computer of the future as “invisible.”

The point cannot be overstressed: make the computer system invisible[14].

The following essay will tackle this contradiction, suggesting a resolution by way of

another design principal not on Norman’s list: transparency. Here, transparency refers to

the revealing o f mechanical causality through design considerations. Transparent design

1The seven measures: “Tell what actions are possible”, “Tell i f system is in desired state”, “Determine

mapping from intention to physical movement”, “Perform the action”, “Determine mapping from system

state to interpretation”, “Tell what state the system is in” and “Determine the function o f the device”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Mechanical Transparency on Large and Tiny Machines 45

may also strive to allow better access to historical antecedents, remnants o f design giving

insight into an artifact’s evolution.

4.2 Mechanical Transparency on Large and Tiny Machines

Norman argues that it was the task that needed to be visible, not the machinery. He

creates two categories for interacting with the computer, “command mode” and “direct-

manipulation mode.” Command languages are an example o f command mode. Direct-

manipulation mode includes, for example, video games, spreadsheets and text editors. Hav

ing indulged in this categorizing, Norman immediately goes on to make some paradoxical

claims about direct-manipulation mode.

But direct manipulation, first person systems have their drawbacks. Although

they are often easy to use, fun and entertaining, it is often difficult to do a really

good job with them. They require the user to do the task directly, and the user

may not be very good at it. Colored pencils and musical instruments are good

examples o f direct manipulation systems. But I, for one, am not a good artist

or musician. W hen I want good art or music, I need professional assistance.

So, too, with many direct manipulation computer systems.

Are direct manipulation devices, including applications, “fun and easy” or “difficult?”

Perhaps both, rendering the categorization far less helpful in the search for an ideal. Nor

man suggests that such interfaces may require professional assistance. Yet, this is the mode

o f spreadsheets, word processors and video games. More typically it is command mode

and esoteric languages that have fallen to the purview of professional syntactic stunt peo

ple. Musical instruments are given as an example of a direct-manipulation, domain o f the

professional device. The computer is a musical instrument and electronic music can be

programmed using command languages, the essential command mode.

Justifying Norman’s logic is less fruitful than the observation that there really isn’t so

much difference between these modes as Norman might want us to believe. If musical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Mechanical Transparency on Large and Tiny Machines 46

instruments are direct-manipulation devices and computers are musical instruments that

can be played via command mode, perhaps command mode should really be considered a

direct manipulation mode? Norman’s copout o f this paradox? Make the computer invisible,

reduce it to nothing more than a platform for heavily constrained task specific tools, remove

programmability and flexibility, diet away the challenge o f learning the tool but in the

process loose the rich fat o f adaptability to specific problems and alienate the end-user

from the underlying mechanisms by which the machine operates.

Making the computer invisible begs the question o f confusion since the units of com

putation, bits, bytes, logic gates, etc... are so small that they’re already impossible to see.

The outer perimeters o f computers may become extremely, even conveniently, small. But

it’s also likely that their inside space continues to become larger and larger as more and

more memory is squeezed onto chips, or at least not shrink from the spaciousness already

attained. And hence a significant dilemma o f computer-human interaction, whether com

mand language based, Wysiwyg point and click or some synergism o f the two, is that most

o f what’s in the computer will not fit on the screen during a single moment. In comparison,

most musical instruments are visible... and audible. Musical instruments provide ample

feedback including haptic. They generally provide a magical and direct relationship be

tween the visible, audible and haptic. Electronic music, unsurprisingly, easily violates this

relationship visually, the strings too small to be seen.

A bicycle is an excellent subject for questions.

So wrote Jean Piaget in The Child’s Conception o f Physical Causality[15]. The famed

psychologist was contemplating how we people come to build our mental models explain

ing mechanistic causality, in this case how a bicycle works. And, the reason a bicycle is so

excellent?

All the pieces o f this mechanism are visible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Mechanical Transparency on Large and Tiny Machines 47

Piaget and Norman would seem to agree that visibility is an aid in the understanding

o f causal mechanisms.2 For Piaget, the visibility o f the mechanics made for experimental

convenience. Piaget reasoned that all adults can name the key components o f a bicycle

(wheels, chain, handlebar, etc...) circa 1930 and describe the role they play in the bicycle’s

movement. In fact Piaget put the age at which the causal roles are obvious at around 8

years old, at least for the French boys with whom he worked[15].3 However, his interest

was in tracing the development o f such intuitive obviousness. Visibility alone apparently

is not enough early in a child’s development. His four year old subjects could see and

even name the parts o f a bicycle. Yet, their causal explanations for movement fall short,

eg. there are motors in the spokes or currents o f air or water inside the tires propelling the

bicycle forward. Still implicitly, the experiment supports the importance o f visibility in un

derstanding a design and more so demonstrates that some developmental change, which I ’ll

just simply call “experience,” actually leads to elimination o f mysterious, hidden causality,

such as a stiff breeze inside the tires. 4 The shape and movement of controls should map

clearly to their functions, eg. turn the handlebar right and the bike turns right, mechanical

causalisty reflected in the design. Norman would seem to agree with such logic, particu

larly in the design o f doorknobs and sink faucets, favorite crusades of his, but less so with

the computer.

Is a piano easy or difficult to play? It’s almost immediately obvious how to get sound

out o f a piano via the keyboard, but it can require decades o f practice before Carnegie Hall

stands in ovation. Or, as a different measure, I cannot match via the piano the complexity

with which I can hum, whistle or hear music in my head, beit a recording of another piano

2’Accessibility’ is probably a suitable synonym for visibility here. The important essence o f visibility

being accessibility to the senses, ie. in apposition to invisible, hidden, unknown.
3Piaget suggested the age for girls was later as they had less interest in bicycles. I’m suspicious that such

a claim would be bom out with the young daughters o f my cycling fanatic friends.
4Piaget suggests that at some early age no amount o f patient parental explication, like cutting open a

spoke, will suffice as the mind’s just not ready. So perhaps the question is what role does experience play in

coming to solve the mystery... the old nature vs. nurture silliness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Mechanical Transparency on Large and Tiny Machines 48

player or a simple day dream improvisation. The instrument demonstrates easy access (low

floor) without prematurely stifling room to grow (high ceiling). With nominal training,

thirty minutes perhaps, one can learn enough to reproduce the simple 2-5-4 or 1-4-5 chord

progressions characteristic o f much pop music- pianos are used successfully in a wide

variety o f artistic applications ranging from simple chords to concurrent playing o f bass

lines, chords and melodies by a single player. Beyond the question o f playability and

my own lackluster tickling o f the ivories, I feel comfortable in describing how a piano

produces a sound via levers, hammers and strings. A cursory glance inside an open grand

piano reveals the basic mechanisms. With an open face plucked string instrument such

as a guitar, I may even be able to visualize the nodes on the string corresponding to the

harmonics o f its base frequency. These instruments may not quickly avail their users to

succeed in a certain musical task, but their mechanistic causality is not elusive in its main

components, a qualifier added in recognition o f less obvious nuances: dryness o f the wood,

interaction o f two concurrent tones, and the infinitum o f complex systems. When I first saw

a gamelan as a teenager, I essentially had instantaneous understanding o f its mechanistic

causality, enough so to “play” notes even though I will not be joining a Balinese orchestra

anytime soon.

Making a design analogy between the physical mechanism o f a computer such as the

electric charges on doped silicon and the circuit layout of logic gates to a bicycle or a musi

cal instrument would be quite difficult if based on visibility. One could build the computer

to a very large scale, say where each circuit is a few millimeters wide. O f course, such a

computer might be so large that the big picture would extend off the horizon. Engineer

ing efforts have mostly been striving for the opposite transformation in size like reducing

one bit o f information to something the size o f a single proton- a bit encoded by the spin

direction o f the particle. A second approach might employ a sort o f microscope. A micro

scope, similar to the fantastically large computer, would improve local detail but again at

the expense o f the bigger picture. Still this could be an improvement o f sorts. The com

puter works on patterns and much o f the size o f a circuit’s design results from redundancy,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Mechanical Transparency on Large and Tiny Machines 49

eg. holding many bits o f data. Revealing a single piano string provides a correct starting

model as to how each string will operate. Revealing two strings will suggest a relation of

string diameter to pitch, wider strings producing lower tones- a revelation reminiscent of

induction.

While the boards, buses and chips o f today’s computers are still visible, computation

already occurs at an invisible level. The sensibilities o f intuition are deprived o f their old

crutch, eye-level seeing. Magic and the unexplainable waft from the miracle o f miniatur

ization and its elusive mechanisms, like the motors in the bicycle spokes of Piaget’s four

year olds.

Most o f us use our sight sense when negotiating the computer. The commonest user-

interfaces, command mode and Wysiwyg, depend on it. But the images have been trans

formed any number o f unknown times between the chip and our retinas. Transformations

similarly occur for auditory or haptic input-output. These transformations bridge mag

nitudes and coding schemes from binary electric charges to Latin alphabet glyphs. The

tranformations’ designs define the mappings between mechanistic causality and the senses.

Mapping and visibility, such as used by Norman, may provide thought provoking catego

rizations. But they aren’t strictly exclusive o f each other. I can watch somebody drive a car

and the mapping between steering wheel turns and car turns will aid my understanding in

use o f the device. Mapping is even more closely related to feeling, not necessarily haptic,

ie. touch, but o f the act-and-react, experimentation kind as in “feeling one’s way through a

problem.” Reach out and affect some inertia. How did the state o f the system change?

Let’s say our interest is to understand the physical mechanisms o f the computer. Not

such a strange desire. The semantic content on a disk is as firmly encoded by magnetic

charge as ink set on paper. Tasks, like producing and reproducing electronic music, are

physical and might be explained as a relationship o f physical mechanism. These mecha

nisms can be understood by appealing to intuition’s acceptance o f causality, enumerations

o f a sequence o f acceptable relationships. A widely used user-interface standard for affect

ing this physical mechanism is assembly code, a catchall for language that widely varies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Mechanical Transparency on Large and Tiny Machines 50

across hardware but in every case closely captures the changes that must occur at the level

of the physical computer. Assembly code not only provides an interface for issuing changes

to the physical machine on a one-to-one basis, but provides a nice outline of causal rela

tionships. Assembly code, more than other programming languages, satisfies the goal o f

clear mappings through the transformations between the controls and the changes in the

underlying device. Here is the assembly code for the program that adds one and one (1 +

1) on my Intel machine as translated from a short program written in the C language.

.file "test.c"

. text

.globl main

.type main,@function

main:

pushl %ebp

movl %esp, %ebp

subl $8, %esp

andl $-16, %esp

movl $0, %eax

subl %eax, %esp

movl $2, -4(%ebp)

movl $1, %eax

leave

ret

.Lfel:

.size main,.Lfel-main

.ident "GCC: (GNU) 3.2.2 20030222 (Red Hat Linux 3.2.2-5)"

The mapping is clear. An instruction such as m ov l literally moves electrical charges

from the memory at % esp to %ebp; the movement is as real as if one had two piles o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Mechanical Transparency on Large and Tiny Machines 51

oranges, moving the fruit between piles to count off arithmetic operations. The same pro

gram could be accomplished by the manual toggling o f physical switches. The program

is readable, leveraging our expertise with the symbols o f a widely used natural language.

Perhaps the mapping to physical mechanisms o f the computer doesn’t get any better than

this. Mapping toward the natural language skills used outside o f computing does. The C

program from which this assembly code was generated is given below. The C code more

closely follows familiar algebraic notation, ie. a standard o f sorts introduced early to most

primary school students.

int main() {

int r ;

r = 1 + 1;

return 1;

}

What has been gained in the abstraction, the transformation between the assembly code

and C code? The program is terse. More can be accomplished with less code. The pro

gram’s operation is clearer. What is lost? The cost is clarity o f mechanistic causality.

Programming languages may be regarded as the domain o f the highly trained, the pro

fessional, the guru. But they weren’t invented to benefit computers. Computers existed

before programming languages and can operate fine without these levels o f indirection and

abstraction. For instance, the Buchla is an early analog synthesizer where programs are cre

ated by patching together wave generators, amplifiers and filters using cables in the manner

o f an old fashioned telephone switchboard, Figure 4.1. Text based, terminal readable pro

gramming languages make computers easier to use in a way that, by extension, increases

their utility. Ease and utility exist in a precarious balance. A slice toaster is easier to use

than a hibachi, but less versatile. With the invention of programming languages, little util

ity is lost. Translucency o f the mappings to mechanistic causality becomes cloudier, but

everything the computer could previously do, it can still do. The increase in speed and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Mechanical Transparency on Large and Tiny Machines 52

Figure 4.1. The Programming Interface fo r an Early Buchla Synthesizer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Mechanical Transparency on Large and Tiny Machines 53

flexibility when swapping or modifying the program, once done by some mechanism like

changing the Buchla’s patch cables, has generally outweighed the loss of contact with un

derlying mechanism. Besides, anyone capable o f programming in a high level language

such as C can probably understand the assembly code in short order.

But, the consideration that ease has a relation to utility is the first o f two major ingre

dients greasing the downhill spiral o f human-computer interaction. The second ingredient

is well known, marketability. The bottom o f the pit? Computers that are as easy to use

as any well designed doorknob... and about as useful.5 Programming languages presup

posed the proceeding software evolution o f desktop applications- the level o f indirection

at which most o f us manipulate the computer most of the time.6 To use an application, it’s

not only unnecessary to understand the physical mechanistic causality o f the rocks in the

machine, it’s unnecessary to understand the programming language with which the appli

cation was written. The utility o f applications can almost go without saying and I neither

wish to portray them as a petulance or plan to cease using them myself. I f the task at hand

is pulling up from the database the available seats on a flight to Montreal while you or I

wait impatiently at a ticketing counter eight hours jet-lagged, twelve hours since the last

real meal and twenty four hours since a shower that wasn’t served on a washcloth, the trans

parency o f logic gates and parse trees is pretty irrelevant. But, all these levels o f indirection

add inconvenience to the gizmo curious- the individualist who enjoys disemboweling their

lawnmower engine, dishwasher and stereo equipment. Manufacturers, most notably in the

automobile industry, increasingly add hurdles to the do-it yourselfer in the forms of spe

cial diagnostic equipment and tools, diverting even simple jobs into service departments of

their respective dealers. The indirection should annoy engineering and computer science

students who, despite specializing in abstraction, must wade through innumerable lateral

inventions before crossing core concepts while some parts remain forever invisible as ac-

5 Intelligent agents, ambient intelligence, intelligent environments come to mind, eg. a computer that turns

on and off the lights in my living room.
Programming languages are the interfaces to applications like compilers and assemblers, ie. applications

that enable other applications.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Mechanical Transparency on Large and Tiny Machines 54

cess to even the source o f the programming languages is denied in the name o f intellectual

property, an odd scenario to place a student. What about the hapless ticketing agent look

ing for an explanation when the database query fails- times out, gives an error message

or results known to be erroneous? Little engines in the spokes? Currents of air and wa

ter in the tires? Even if there is nothing the agent can do, a likely and prudent scenario

in a distributed, mission critical database application, they are denied the satisfaction of

understanding. W hat’s at issue with the evolution from programming languages as the pri

mary application to secondary user applications is the trade o f flexibility for simplicity, the

obfuscation o f physical causality.

And the group that should be most put out are the artists and scientists who in the course

o f their explorations will need to push computers into areas not necessarily premeditated

by distant application engineers. Like a furtive doorknob in a burning building, the lack of

visibility o f the underlying mechanisms traps the end-user into accepting decisions made

by the application designer. Scientists often find an out by simply learning to program, an

endeavor more easily accomplished than gurus might like revealed. Numerous languages

cater to scientific programming such as Octave, Matlab and, historically, Fortran while

usually any language that can handle numbers at the limit o f the computer’s precision will

work fine. The limit o f precision? This last constraint demonstrates the importance of better

understanding o f the machine’s underlying mechanism leading to better u se- a computer

cannot store any number, particularly large numbers or very small numbers such as the

difference between two similar “medium” sized numbers, a perhaps surprising realization

that results both from the physical design o f the circuits as well as the software. Artists

may or may not learn to program or for a variety o f reasons including inaccessibility to

foundation concepts, may explore glitch, ie. using a device for some purpose other than its

designers intended [16] [17]. Tumtablism, the sampling and mixing from vinyl records on

the fly, is analog glitch. Or, at least it was before the record player as instrument became

so popular that records are pressed specifically for this purpose without the intention that

they will never be played start to finish in a linear fashion. Blip and beep electronic music

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Mechanical Transparency on Large and Tiny Machines 55

Figure 4.2. The wooden Laufmaschine from which the bicycle has descended

often resorts to glitch such as the intentional scaring of compact disks for the sake o f skips.

Collage o f any sorts, audio or visual, might be thought o f as glitch, a recontextualization.

Rube Goldberg’s cartoons and sculpture certainly employ glitch, as well as wildly complex

but mechanistically satisfying design. Duct tape is more often than not employed in a

special category of glitch known to engineers as “kludge,” performing service where it

was not primarily intended and where a better solution exists, such as screws or glue.

Transparent design hopes to fuel the same creative motivations driving glitch.

Glitch may often be bom of recontextualizing a technology in the absence in under

standing o f or alienation from its design principles. Hacking, in the older tradition o f the

word implying something done clandestinely, is sometimes motivated by an alienation from

the social structures that support the technology, for example unemployed engineers with

out inside access to modifying a system, up-and-coming students yet to receive an invite

into the corporate fold and the otherwise disenfranchised[18].

Providing access to mechanical casaulity can enable that intellectual urge to understand

and ease the process o f adapting, innovating and recontextualizing technological artifacts

by engineers and artists as the artifact evolves.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Mechanical Transparency on Large and Tiny Machines 56

Figure 4.3. More moving parts- the mechanisms are still mostly exposed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 Historical Transparency 57

4.3 Historical Transparency

4.3.1 The Designer’s Access to the Turning Points of Ideas

For the moment, the state o f the art in computer usability, at least on desktop computers, is

dominated by graphical user interfaces and Wysiwyg point-and-click environments. These

environments were a long time in the making and during their early years, natural and pro

gramming languages held most o f the attention o f HCI conscious software efforts, Table 4.1

[19]. Programming languages showed their early utility to humans and their productivity

with their new computing machinery. Furthermore, through the fifties, sixties and most

o f the seventies, text based computing suited hardware constraints like memory, process

ing and display limitations. Even tightly constrained applications where a user could only

choose from one o f several options, it was likely that the choice would be submitted as a

text based command, if only a number. As the computer advocates tried to get the machines

into more and more hands applying it to more and more tasks, users and programming lan

guages were pushed to find common meeting points. Languages would have to become

still easier to use. Possible errors, often arising from misunderstandings of the invisible

underlying physical mechanisms, would need to be removed. An infamous example is the

memory management devices left in the C programming language, particularly memory

allocation, deallocation and pointers. Late binding makes applications more flexible. Ini

tially runtime binding o f data to variables was an accomplishment, later late binding was

extended to types. Some languages, such as Lisp, more or less hid types from the users

altogether. But the user was going to have meet the challenge too. Computer luminaries

such as Alan Perlis contended that programming could be a skill for everyone and that

computer science would be a core discipline in the liberal arts curriculum [20].7 Computer

7”The writers have been preoccupied with the malaise o f man adrift in a wealthy yet culturally oppressive

society. Few have studied the real problem- man's decreasing range o f influence, the rapid obsolescence o f

his patiently acquired techniques, and the substitution by technology o f vast numbers o f trivial choices for the

few really critical to his development. Man is not dehumanized or enslaved but he is in danger o f becoming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 Historical Transparency 58

literacy was bom. And computer literacy was correctly recognized as an important skill

to cultivate in light o f the impending ubiquity o f the machine. And why shy away from

including this new curriculum as a liberal art and not stingily and solely the purview of the

specialist? Most core concepts can be covered in a single semester, certainly enough to

launch a student on the path o f writing programs that model and transform the problems

in their respective fields. Computers have met the expectation o f mass-market penetration,

at least for the affluent, technological sectors. But has the ease o f use accompanying icon

based compuing come at the price o f technological literacy?

Obfuscation has accompanied software interface evolution. The underlying mecha

nisms, hardware and software, are often hidden from the devices built on top o f them. Pro

gramming languages move to hide physical mechanism such as memory management. Ap

plications hide the idiom of the programming language with its keywords, elliptical syntax

and unforgiving semantics- no matter how usefully flexible they may be. The evolutionary

pressure is simplification, a tacit design philosophy that flexibility imbues unmasterable

complexity. For added protection, simplification is accompanied by constraints, including

the constraint that lower level building blocks should be unreachable.

As mechanical causality is hidden, so is historicity. Compare the images o f the lauf-

maschine and the bicycle, Figure 4.2 [1] and Figure 4.3. While the laufmaschine lacks

a drive train- the crank, pedals, gears and chain- the frame and wheels are present. As

they are in the contemporary bicycle, available for analysis. Visible and easily inspected, a

comparative anatomy of the two machines shows historical development as well as ideal

istic conservation. In the case of the computer, the elusiveness o f historicity and causality

are linked in the chronology o f a development where older parts still exist, like the bicycle

frame, as framework on which the newer parts are built. The newer parts, as already ar

gued, are by their nature often designed with the intention o f adding constraints and hiding

complexity of the older parts,

irrelevent.” - Alan J. Perlis ACM Address, 1963

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 Historical Transparency 59

4.3.2 Early Themes in HCI

The study o f human-computer interaction, at least under the broader category o f human

factors, has been around for nearly a half century, if not longer. The IEEE published “IEEE

Transactions on Systems, Man and Cybernetics,” generously leaving women out of that

dubious formula, between 1988 and 1995. Previously, this publication’s topics had been

partially captured in “IEEE Transactions on Man-machine Systems,” which had until 1967

been known as “IEEE Transactions on Human Factors in Electronics,” which until 1973

had been known as “IRE Transactions on Human Factors in Electronics,” which dates

back to 1960. Many of the bread and butter themes of human-computer interaction are

well represented even in those first issues. “Pattern Recognition and Display Characteris

tics” by W.R. Bush et al examines human performance on graphical displays, in this case

radar screens [21]. “Computer Languages for Symbolic Manipulation” by Bert F Green Jr.

underscores the importance o f programming languages to human use o f the new machin

ery [22], Accessibility opportunities are represented by H. Freiberger et al in “Reading

Machines for the Blind” [23]. The potential for using natural language in the interface,

alluded to earlier, shows up in Thomas Marill’s “Automatic Recognition of Speech” [24],

A 33 year young Marvin Minsky submitted a lightly annotated bibliography on Artificial

Intelligence, “A Selected Descriptor-Indexed Bibliography to Literature on Artificial In

telligence” [25]. The mouse may have still been some years off, but in the debut volume

Richard L. Deininger examines “Desirable Push Button Characteristics” [26]. Even early

echos of UML appear in “Operational Sequence Diagrams,” a lovely little article diagram

ming diagrams aiding visualization o f more efficient missile destruction, written by none

other than Fred A. Brooks Jr, most famous for his book The Mythical Man Month [27][28],

Many o f the components directly evolving into the modem graphical, Wysiwyg envi

ronment were well developed by 1981. Graphical applications should trace their history at

least back to Ivan Sutherland’s Sketchpad application developed in 1963 during his PhD

work at MIT [29]. Sketchpad used a lightpen to manipulate onscreen vector based draw

ings. In his introduction to the application, Sutherland proclaimed, “The Sketchpad system,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 Historical Transparency 60

by eliminating typed statements (except for legends) in favor o f line drawings, opens up a

new area o f man-machine communication.” [29] O f course, Sutherland had to type quite

a few statements into his TX-2 computer, a computer programmed in an operation code,

ie. an assembly language. A few years later, William K. English, Douglas Englebert and

Melvyn L. Berman of the Stanford Research Institute evaluated the newly invented mouse

along with several other display-selection devices such as joysticks in a series o f challenges

given to human users [30], The results were published in 1967 among the pages o f IEEE

Transactions on Human Factors in Electronics,8 Perhaps most significant to contempo

rary windowing environments, Xerox PARC’s integrated IDE and programming language,

Smalltalk, would feature overlapping windows by 1972. In 1981, Xerox would release the

Star Workstation featuring WIMP (windows, icons, menus, pointers) Wysiwyg desktop. W,

the precursor to the X Window System which is now the backbone o f most unix windowing

desktops, would be written a year later at Stanford by Paul Asante and Brian Reid [31].

While these ideas were decades in the making, or in some cases, decades in the waiting

for hardware powerful enough to support software concepts such as overlapping windows.

The popular Apple Macintosh would not be released until 1984. Microsoft announced its

windows desktop in 1983, but it wouldn’t be until Windows 3.0, released in 1990, that

the environment would begin to eclipse the command-line idiom of D O S-1 still wrote my

undergraduate papers in a DOS based word processor as late as 1994 as I found both Mac

and Windows too slow for editing work.

4.3.3 Changing Fashions in HCI

The Association for Computing Machinery (ACM) has been hosting a conference on human-

computing interaction since 1981, or as the ACM prefers, “Computer-Human Interaction,”

CHI conference. The SIGCHI proceedings from the last quarter century provide an in

formative paper trail revealing the transition in interface paradigms. Computer literacy

8In a curious historical example o f antique terminology, in English’s et al article the onscreen cursor is

called a “bug” and the process o f following its movement “bug tracking.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 Historical Transparency 61

concomitantly changed; in some cases it picked up a new look such as visual programming

languages while in others it seems to have been dumbed down in favor of idioms requiring

less background knowledge and practice where context and constraints provide the usage

guides to the user, albeit with loss o f flexibility. Either way, programming languages be

came less important, delegated to the domain o f the scribes and gums. SIGCHI papers such

as the 1983 submission “What Do Novice Programmers Know about Recursion” or a 1986

report “Does Programming Language Affect the Type o f Conceptual Bugs in Beginner’s

Programs? A Comparison o f FPL and Pascal” increasingly gave way to papers like “An

empirical comparison of pie vs. linear menus” [32],

A review o f paper titles, abstracts where available and, in some cases, the text body

itself over the same 25 years of SIGCHI provides a suggestive trace of the change in com

puter literacy’s importance.9 In my review, themes have been binned into three categories:

papers dealing with programming, papers dealing with graphic design issues and, since

these topics aren’t mutually exclusive, papers dealing with both Table 4.1 [19]. I ’ve made

the following interpretive stretches for the sake of better comparing computing environ

ment idioms. The programming theme includes papers on command-lines and command

names while the graphic theme includes multimedia. The mixed category is a potpourri

including veritable polemic ends o f the spectrum; some papers busied themselves with

comparisons o f the two idioms, sometimes vitriolicly. Other papers more wisely sought

synergisms in the approaches such as programming IDEs, visual programming languages

and user-interface management systems. The categorizations are my own without benefit o f

any set-in-stone standard or independent validation. However, to give better insight into my

approach and, well, claim a modicum o f objectivity, Table 4.2, Table 4.3 and Table 4.41ist

the themes o f each paper more specifically [19],

9The ACM SIGCHI conference formally came about in 1983. Prior to that it’s immediate antecedents

were known as “ Proceedings o f the 1982 conference on Human factors in computing systems,” “ Proceedings

o f the joint conference on Easier and more productive use o f computer systems” and “ Proceedings o f the

ACM/SIGGRAPH workshop on User-oriented design o f interactive graphics systems” [19],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 Historical Transparency 62

Table 4.1. Comparison o f Programming themed (P) and Graphic Design related (G) pa

pers fo r the first 15 years o f the ACM ’s CHI conference along with the most recent year. B

are papers with both programming and graphic design themes.______

Year Total P B G

1981 79 4 (5%) 4 (5%) 2 (2%)

1982 75 13 (17%) 4 (5%) 7(9%)

1983 59 9(15%) 3 (5%) 6 (10%)

1985 31 2 (6%) 3 (10%) 5 (16%)

1986 47 3 (6%) 3 (6%) 10(21%)

1987
i,

46 1 (2%) 4 (9%) 12 (26%)

1988 39 4 (10%) 3 (8%) 6 (15%)

1989 54 1 (2%) 8 (15%) 9 (17%)

1990 47 0 (0%) 11 (23%) 8 (17%)

1991 56 3 (5%) 6 (10%) 17(30%)

1992 67 2 (3%) 6 (9%) 30 (45%)

1993 70 0 (0%) 4 (6%) 15(21%)

1994 62 3 (5%) 8 (13%) 15(24%)

1995 60 2 (3%) 5 (8%) 17 (28%)

1996 55 1 (2%) 2 (4%) 19 (34%)

2005 93 1 (1%) 1 (1%) 17(18%)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 Historical Transparency 63

Table 4.2. Representative themes corresponding to Table I: 1980 - 1989

Examples o f Themes

1981 P error messages

B text editors, wysiwig modeling, IDE/shells

G visicalc & arcade games

1982 P indentation & documentation, lifecycles, functional specs

B typography, Basic & text editors

G menus

1983 P formal specs & Prolog, query languages, recursion, Pascal tutor

B commands & icons

G locating items on screen

1985 P abbreviating command lines, Basic

B comparison o f text & visual, toolkits

G widgets, Phong shading, spread sheets

1986 P Logo vs. Pascal debugging, semantics

B visual programming, visual vs. text debugging

G editing, medical cognitive graphics, windows

1987 P command names

B editing commands vs. graphic, data gloves & visual programming, Lisp & IDE

G antialiasing & visual performance, windowing, interactive b-splines, CAD, widgets,

UIMS

1988 P command line histories, very simple languages, program comprehension in Pas

cal/Fortran, documentation

B visual programming with Lisp, command lines vs. direct manipulation, animating

algorithms

G interface graphics, menus, oscilliscopes, voyage o f the mimi/educational multime

dia

1989 P command lines

B interactive graphics, example-based programming, IDE, UIMS, UIMS/Pascal, vi

sual programming, symbolic math

G toolkits, color, UIMS, modeling user interactions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 Historical Transparency 64

Table 4.3. Representative themes corresponding to Table 1: 1990 -1996

Examples o f Themes

1990 P

B UIMS, layout algorithms, visual programming, visual Unix shell, Smalltalk

G widgets, menus, spreadsheets, multimedia navigation, buttons, animation to teach

algebra

1991 P Pascal program comprehension, Unix commands

B usability for graphical programming, visual language parsers, Smalltalk, animated

algorithms

G dynamic icons, animated 3d visualizations, spreadsheets, multimedia authoring

1992 P COBOL tutor & problem solving, OOD

B CAD, 3d design, GUI, UIMS, MAX/IRCAM

G multimedia, fisheye views, GUI, widgets, accessibility, CAL, database query wid

gets

1993 P Pascal & mental models, Logo media, aiding functions SPSS

B animated algorithms, demonstration programming/macros, UIMS, IDE, text vs.

graphic queries, visual source code

G 3d interaction, stereoimages, GUI, menus, whiteboard style UI, internationalization

1994 P

B OOD, IDE, visual 0 0 programming, programmable design environment

G text vs. multimedia, GUI for the blind, piemenus, starfield displays, fisheye views,

transparent tools, alphaslider

1995 P psychology o f programmers, command aliases

B user built widgets, demonstration programming/macros, UIMS, IDE/programmer

behavior, Smalltalk/OOD

G GUI/online help, menus, tile bars, X Window for low vision, frontpanel for Unix

1996 P end-user programming of personal agents

B demonstration programming/macros, interface for math algorithms

G animation/user decisions, CAD, accessibility, PDA/interactive tv, hypertext in GUI,

map interfaces, 3d & web, button bars, widgets on small screens, color models,

transparent menus, 3d web browser, multimedia CAL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 Historical Transparency 65

Table 4.4. Representative themes corresponding to Table I: 2005

Examples of Themes

2005 P debugging & gender issues

B Logo Microworlds

G visual search behavior, menus, zooming scroll interfaces, window selection via eye

tracking, text on mobile devices, snapping, vacuum widget, toolkits, cursor orienta

tion, thumbnails, fisheye, stencil widgets

The ACM SIGCHI papers reveal the anticlimactic punchline. Interest in programming

languages as an HCI opportunity, at least to the preeminent SIGCHI community, was on

the decline through the eighties and was all but a trickle after Apple and Microsoft had

released the popular windowing environments. Graphic design was taking up the slack in

interest. Explaining this trend is a resort to speculation. Perhaps these researchers were

on the cutting edge, defining the new idioms that would shortly come to dominate the

marketplace and office space. Or, perhaps they were just on the coattails o f market success,

testing what had already been proven by consumer behavior- simple chasing o f research

monies. More likely it’s both, a mix o f Zeitgeist and self-fulfilling prophecies bom of

sufficient hype. More clearly, programming languages did not go away. The new user-

interaction solutions depended on programming languages. People still wrote code. But,

those people would no longer be the masses or jpfs (just-plain-folks).

Another notion holding researchers’ interests before the coming of age o f graphics

environments was the use of natural languages. A broad category, that includes making

programming languages that behave more like the everyday language of person-to-person

communications as well as computers that take their commands in the form of verbal in

structions. Not to forget that AT&T has made considerable contributions to computer tech

nology such as the C and C++ programming languages and, in part, Unix and that AT&T

has long been in the business o f relaying voice communications. But the use o f natural

languages is a logical interface choice given the proficiency almost everyone has with at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 Historical Transparency 66

least one. That graphical environments took the trophy over natural language processing

for bringing the computer to a wider audience may be as simple as that the latter was just

ahead of its time. The former was just easier to implement and even it had to wait more than

a decade for hardware to catch-reup with the software to the point where users wouldn’t

frustrate from the wait while the processor labored at redrawing windows . Graphics’s

beating out o f natural language, beit as an aid to programming instructions or verbal com

mands, further reveals its irony when human graphical acumen is compared with language

skills. Consider how many of your friends are even moderately accurate illustrators versus

how many can construct a complete sentence. Recall a simple command-line instmction,

for instance, how to list the file contents o f a directory or how to copy a file. Let’s say

you selected “cp,” the file copy command on Linux/Unix machines. The symbolic repre

sentation o f the letters “c” and “p,” to be fair, involves typography, a graphic design issue,

and when entering the command into the keyboard, the font adds a huge constraint on the

typography. Independent of this constraint, the glyphs “cp” maintain their meaning across

a variety o f idiosyncratic reproductions. And, it’s easy to remember. Now, without look

ing, draw the icon for the desktop launcher o f your favorite web browser, word processor

or other frequently used application. How close is it? Would it be understood by someone

else as that icon if passed on a piece o f paper at lunch? The icon’s use relies on constraint.

I recognize my mozilla and firefox icons, neither o f which I reproduced particularly well,

in part because I also remember where on the tool bar I will find them.

This same experiment was conducted fall o f 2005 with a group o f eleven undergraduate

students drawn from an introductory computer science class as well as an introductory

computer music class.10 Students were given a blank piece o f paper and given the following

two challenges:

• As accurately as possible, draw a desktop application icon that you frequently, al

though not necessarily constraining the size

• List any numbers you can think o f that a computer cannot represent

10University o f Victoria Ethics Approval Protocol Number 05-250

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 Historical Transparency 67

In some cases students were also asked to give the approximate number o f times the

icon was used daily; all students were encouraged to draw a “frequently” used icon. O f

course, determining “how accurate” a drawing might be is somewhat of a sloppy business.

In this measurement, accuracy is measured by three criteria. First, is there an object missing

from the icon? Second, is there an error in positioning, ie. an object drawn in front of a

second object when it should be behind, z position determined by overlapping lines o f the

two objects. Finally, is there a scale error when considering two objects, ie. one is smaller

than the second when it should be larger. Each o f these criteria require that at least two

objects be present. These errors are listed as I, II and III respectively in the results table,

Table 4.5.

O f the eleven surveys evaluated", three included alphabetic glyphs: twice the V of

M S’s Internet Explorer application and once the ’W ’ of M S’s Word application. It would

be interesting to have sat in on the meetings where these designs were agreed upon and

hear the justifications. Here 1 can only speculate that Microsoft’s graphic designers were

smartly capitalizing on the well known images o f alphabetic glyphs. The errors for the

verifiable icons, ie. icons I could subsequently find for comparison, are given Table 4.5.

O f these eight samples, only one was without any o f the predefined errors, the applica

tion icon for MSN Messenger. Drawing errors were associated with the icons for Internet

Explorer, Firefox web browser, MSN Messenger, iTunes, Putty and MS Word.

Certainly this small study doesn’t strive to answer cognitive questions o f recall or visual

memory. In the desktop environment, it’s not required to draw the icons, merely select them

from a line-up. But consider the results in comparison to typed commands. How often is

the letter ’p ’ mistakenly drawn in mirror image as ’q?’ It’s unlikely that the frequency of

error is anywhere near 7:8, particularly under constraint of the keyboard. Or, how often is

the DOS file copy command ’copy’ given as ’opyc?’ The point here is that while it’s easy

to have good enough recall o f icons and all the student volunteers have no trouble finding

11 Some icons were not readily available as references when reviewing the surveys and hence are not used

in the evaluation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 Historical Transparency 68

Table 4.5. Occurrence o f Errors in Student Drawings o f Application Icons

ID Errors

I II III

11 X

10

9 X

7 X

6 X X

4 X

3 X X

1 X

and launching their applications, typed or written language is a very familiar idiom already

widely used with accuracy by the computing population. While the value of illustration as

a basic competency demanded of the population is very valid, its realization is probably no

easier than widespread understanding o f programming in structured typed-text languages.
12

A warm, sunny, midsummer Sunday afternoon provides excellent opportunity to pedal

my mechanically transparent bicycle for a few hours. I am passed by dozens o f antique

vehicles, the sort that only come out on such a day. Among the usual convoys o f 70s

muscle cars, 60s convertibles and 50s landsharks are dozens o f cars dating back to the 20s

and 30s. A few of these cars, the very ones that passed me today, were built ten to twenty

12The second question on this survey, what numbers can a computer not represent, was meant to gage the

participants familiarity with the machine’s physical constraints. Two responses indicated there are no con

straints or none that he or she knew of. Two responses indicated very large numbers and three each believed

the computer was incapable o f handling irrational or complex numbers. Four responses gave other reasons

including an inability to store or represent zero and another singling out Roman numbers. Independent o f the

validity o f these responses, I thought it curious that nobody indicated the computer handled only a discrete

set o f numbers o f limited precision.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3 Historical Transparency 69

years before the first programmable, Turing complete (or as close as possible on a machine

o f finite memory) electronic computers such as the ENIAC, which went online in 1946.

The ENIAC wasn’t able to store its programs internally, though the idea was out and about

at the time, but rather was programmed like the Buchla synthesizer via a rewiring. Unlike

the Buchla, the ENIAC was not capable o f cool concert performances to the delight of

tripped-out groupies. At 27 tons it didn’t fold for transport. Stuck in one room, it slowly

labored at its hawkish task o f calculating ballistic firing tables [33].

The computer awarded the distinction o f being the first computer capable o f internally

storing a program was the EDS AC [33]. It’s designer and implementor, Maurice V. Wilkes

was awarded the second Turing Award ever given by the ACM in 1967 and is still alive

today. In fact, o f the first eleven recipients o f this most prestigious award, six are still

alive today in 2005. All eleven lived to see the release o f the Apple M acintosh in 1984.

The first recipient, A.J. Perlis who won the award for work on programming languages and

compilers and was quoted earlier as an advocate o f general inclusion of computer science in

the liberal arts curriculum, died the same year Microsoft released the definitive 3.0 version

o f its windowing system. Some of these recipients still hold academic positions and are

publishing papers such as Harvard professor and 1976 Turing Award winner Michael Rabin

who did early work on finite automata and nondeterministic machines and now researched

cryptography.

Other players from this narrative also won Turing Awards. Ivan Sutherland o f Sketch

pad fame won in 1988. Douglas Englebert o f mouse fame won in 1997. Frederick P.

Brooks, Jr o f efficient ballistic missile launch fame won in 1999, although not specifically

for that work. Marvin Minsky (1969) and John McCarthy (1971) both had some direct

historical influence on the development o f Logo programming language through their in

volvement in AI research at MIT and work on the Lisp language, the parenthetical parent

o f Logo.

The Turing Award winners are key players in many o f the key technologies that define

the computer machine we deal with today. And all but a few of them are younger than the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.4 Literacy with Machines, Literacy of Machines 70

classic cars out trying to pass me during my bicycle sojourn. Beyond making the point

that the novelty o f even old computer technologies isn’t particularly old, none o f these ear

lier pioneers have backgrounds in computer science such as exists in today’s universities,

reified as departments and degree programs. O f the original eleven award winners over

the first ten years, at least five received their final degree in mathematics, three in physics

and one in political science. Indeed, Edsgar Dijkstra argued, to the consternation o f the

software engineering proponents, that real computer science was simply a branch o f math

ematics in his rant, “The Cruelty o f Teaching Computer Science” [34]. What sort o f fruit

educations in computer science will bare is simply a story that requires patience in its un

folding. However, these early luminaries’ training gave them accesses to very low level

principles and a fuller picture of the machine, still naked in its mechanistic causality.

4.4 Literacy with Machines, Literacy of Machines

Presumably, with a field as new as computer science, many o f these researchers saw their

efforts as the incipient baby steps. “The best way to predict the future is to invent it,” said

2003 Turing Award winner Alan Kay who in 2004 gave a keynote address to the Object-

Oriented Programming, Systems, Languages and Application conference in Vancouver,BC

titled “The computer revolution hasn’t happened yet.” Kay is likely most famous for his

Smalltalk language written at Xerox PARC in the early 1970s along with help from col

leagues Dan Ingalls and Adele Goldberg among others. Kay’s vision reflects those of

Perlis, Minsky and Papert in regarding computer science as a core curriculum o f general

value to the population at large and that the population at large should have access to a

level o f control o f the machine that employs its full flexibility for modeling, simulating and

experimenting.

The ’’trick,” and I think that this is what liberal arts education is supposed to be

about, is to get fluent and deep while building relationships with other fluent

deep knowledge. Our society has lowered its aims so far that it is happy with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.4 Literacy with Machines, Literacy of Machines 71

’’increases in scores” without daring to inquire whether any important thresh

old has been crossed. Being able to read a warning on a pill bottle or write

about a summer vacation is not literacy and our society should not treat it so.

Literacy, for example is being able to fluently read and follow the 50 page ar

gument in Paine’s Common Sense and being able (and happy) to fluently write

a critique or defense o f it. Another kind of 20th century literacy is being able

to hear about a new fatal contagious incurable disease and instantly know that

a disastrous exponential relationship holds and early action is o f the highest

priority. Another kind o f literacy would take citizens to their personal comput

ers where they can fluently and without pain build a systems simulation o f the

disease to use as a comparison against further information. At the liberal arts

level we would expect that connections between each o f the fluencies would

form truly powerful metaphors for considering ideas in light o f others.

Written in his essay, “An Early History o f Smalltalk,” Kay touches on some of these be

liefs motivating the design o f Smalltalk [35], Smalltalk, in addition to containing a design

brilliance that makes it one o f the most influential pieces o f software on today’s desktops,

contains numerous ironies. Smalltalk was one o f the first object-oriented language and

still one o f the very few fully object-oriented languages, ie. even primitives like num

bers are objects. The inspiration for classes and objects came less from the familiar text

book examples of car is to vehicle/bus is to vehicle or worker is to employee/boss is to

employee examples as from the idea o f biological cells. Each cell is selfcontained with

its own states and machinery for accomplishing given tasks, but cells’ designs are based

on reusable and hierarchical patterns. The design reasoning was that such units would

ease the sort o f modeling-programming tasks that literate 20th century citizens might find

themselves doing. Object-oriented engineering has somehow slipped out of the hands of

the masses, morphing into an industry o f specialists. Thick tomes on Design Patterns and

Object-oriented Systems Engineering make up intermediate to upperlevel study for com

puter science students [36]. Companies hire special architects explicitly and solely tasked

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.4 Literacy with Machines, Literacy of Machines 72

with identifying these structures o f programming language components- structures used

less frequently in ad hoc modeling than inside megalithic applications run on IBM main

frame computers in out o f the way comers of heavy industries like freight shipping, a not

unlikely environment to find IBM ’s Smalltalk-80 implementation.

But, Smalltalk was not simply a programming language. Among many novel features

was its innovative IDE. The development environment that aided in the manipulation of

the objects provides frameworks for the programmer to create classes from which those

objects take their behaviors and did so in the context o f resizable, draggable, overlapping

windows- one o f the earliest such environments and most clearly the model for today’s

windowing systems.

In Smalltalk we find a synergism o f the programming, command mode approaches to

interaction and the context aided, Wysiwyg, point and click graphical environment. Un

fortunately, what has been retained on the desktop computer over the years are the easiest

to use components, the windowing environment. The implementation language itself hid

den from most end users. The part o f the equation demanding effort by the user has been

dropped by the major vendors like Apple and Microsoft, mechanism again hidden away.

In one way, Smalltalk added a level o f indirection between the program and the machinery

below it. The language and its environment run on a virtual machine (vm), ie. the program

instructions tell the vm what to do. The vm must then translate that to instructions affecting

the underlying computer equipment, like reads on the disk drive. The drawback is further

removal from mechanistic causality. One benefit is portability. However, Smalltalk makes

up for this indirection with a different sort of transparency. The language and environment

itself is written in Smalltalk and is accessible to the programmer-user via a class browser

that shows both software design relations and the underlying logic code. In fact, program

ming is really just a process o f making extensions to the virtual machine. The code driving

the virtual machine is not only open source, but it is conveniently organized. It’s available

to view and a source for understanding the design and syntactical idiom of the language.

The programming problem can be approached in either a constructionist or deconstruction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.5 Performance, Good Magic Tricks and Transparency 73

ist direction. Building models is facilitated by modular components while deconstructing

where the goal to understanding is, at least, a possibility via accessible source- a possibility

that reciprocally aids in the construction process by providing patterns and explanations of

the building blocks.

Kay provided a mechanism for those who wanted to “predict the future by inventing

it” in allowing the dissection o f the present. If, metaphorically, the technologies and ideas

encapsulated in their designs are viewed hierarchically, then like the physicists and electri

cal engineers o f the early and hence lower-level computer technology, innovation will be

the option o f those who access and take time to understand the building blocks and how

they can be reconfigured, or the artist who recontextualizes by glitch. When constraints are

defined by forced ignorance via a stinginess with the details, users may relegated to follow.

Glitch provides additional sublimity in its subversiveness; it breaks the constraints. But

with the exception o f trivial or highly prototypical artifacts, it’s not free from performance

rigorousness- quoting out o f context may be the fear o f many writers, particularly those

who touch sensitive topics and, perhaps because o f this, is rightly looked down upon as an

intellectual faux pas. Using technology out o f context, like a chainsaw to trim a beard or

duct tape to secure an airplane wing, demands a certain level o f responsibility on the part of

the improvising inventor- a responsibility that, again, may be better met if one understands

the underlying units and their failing points, ie. even glitch can benefit from an ability to

deconsruct to some arbitrary level without destruction.

4.5 Performance, Good Magic Tricks and Transparency

Earlier I touted the transparency o f mechanical causality in many musical instrument in

terfaces, such as a piano or guitar. Sound, as any radio will demonstrate, can be free o f

visibly demonstrated. Just think o f the “distant sound” o f this or that “dancing down the

twilit street.” The orchestra sitting in the pit at an opera or ballet defies visual analysis as

does recorded music played back via compact disc or similar device [37]. Perhaps many

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.5 Performance, Good Magic Tricks and Transparency 74

o f us are indifferent to this slight o f hand with our focus on the results not the m eans- at

least until we become interested in reproducing the results. Or, perhaps the disconnect from

causality is less removed than this analogy suggests. We may be familiar with operatings

o f an orchestra from previous experience. Furthermore music has traditionally been filled

with reference to human scale. The length o f a bowed tone has a relation to an arm; the

attack, loudness and duration o f a horn to the size and force generating capacity o f a lung;

a rapidly played sequence on the piano to movement o f the fingers and drums, back to the

arms again- no matter how fast the roll, the arms remain a limiting factor. Our bodies may

differ, but within the variance, proprioception provides an intimately known scale, a scale

reflected in music.

Newer technologies offer other disconnects. Sampling and the collaging of samples via

sound editors on laptops provides a cited example o f mechanistic disconnect [37]. In some

genres, such as tumtabalism, cause and effect is still very much alive and delivered with

considerable panache, sonically and visibly. While the cause o f each timbre and pitch of

the samples has been lost in the immediate context, the dynamic impositions unique to the

work are lavishly on display. Synthesizers may use familiar keyboard interfaces, capitaliz

ing on the familiarity to piano players, but the timbres generated are not so easily related

to a source like piano strings. Laptop music often includes both approaches. The laptop

may be used to synthesize new sounds or playback samples. With the audience probably

familiar with both possibilities, the performer, busily typing away could just as easily be

checking email as improvising live music. At a recent concert I attended, a band used

a combination o f approaches including sampled music and live analog instruments, each

musician playing numerous instruments, a process that sometimes involved setting the in

strument with a riff to loop until inactivated. The inclusion o f a vocal track was apparently

one too many components for them to incorporate on the fly. So a prerecorded vocal track

was unabashedly used without even the pretension o f lipsyncing. Beyond any value judg

ment on such a performance, the vocal track ended up dictating the tempo and key o f the

music and lessened the opportunity for improvisational interpretation o f environment like

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.5 Performance, Good Magic Tricks and Transparency 75

audience enthusiasm, a distant trainhom or the hapless waiter who just spilled five pints

o f beer somewhere between the dancers and wallflowers. Motivations for attending a live

performance may include many social factors only tangentially related to m usic- the warm

chaotic crowd, flirtation, alcohol, etc ...- for which many ostensibly pay to see live music.

The possibilities of being the rubes to precorded showmanship is disconcerting. Even with

an accepting audience, as many laptop fans clearly must be and with music capable o f hold

ing its own with the listeners’ interest, performers are aware that the revealing o f cause and

effect can enhance the satisfaction. Juggling flaming pins is that much better and I can’t

recall a drum solo that became less exciting when a piece o f broken stick went flying across

the stage. Magic amazes with its slight o f hand. But truly great tricks remain so even after

their mechanism is revealed.

Visibility, a good conceptual model, mappings and feedback are solid notions to con

sider in design work. Mechanistic transparency, the accessibility the physical components

o f causality, should be appended to that list. In an ideal design, mechanical causality and

historicity are, if not blatant and visible, at least findable, traceable and dissectable. While

neither the machinery nor its history may be simple, loopholes in constraints liberates the

user. Full flexibility o f the computer can be restored, the satisfaction o f understanding

redeemed and the opportunity to innovate made clear.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5

Flowers for Algorithm

5.1 Preface

Perhaps a lingering and nagging question remains: why slow oneself down with unneces

sary details o f how a technology works? Afterall, isn’t that the definition o f mired? The

proceeding essay essentially boils down to an argument that there’s value in rolling one’s

sleeves up and getting involved, making an attempt for an intellectual and visceral under

standing o f these mass-produced, hightech artifacts. Roles fo r intuition in understanding

are discussed along with roles fo r the senses in developing intuition- basically, making

another philosophical case fo r hands-on learning. In keeping with the previous theme, I

advocate a design strategy fo r common artifacts like computers that enables that sort o f

direct involvement.

The essay, however, is not expository- its form, as with all essays, an important part o f

its content.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 77

5.2 Essay

cell phone Bob

in the cell phone mob

talking madly to himself

o f how he rolled out o f bed

and landed straight on his head

but hadn’t found the floor

It’s not untypical to start an essay with a quote from some notable, distinguished author.

They may or not have worked within the discipline o f the ensuing text; noteworthy analo

gies from other disciplines portend to underscore the universality o f the underlying pattern,

the essence o f the proceeding topic. Quotables from thinkers long dead, preferably thou

sands of years dead, add gravity, the weight o f so much death, advice given from one as

omnipotent as a ghost. The filter o f time has resulted in the impression that there were

fewer, and subsequently loftier, thinkers in antiquity. The ancient quote provides the root

node of a hierarchy upon which the novel argument will be based. Or, perhaps it simply

demonstrates the insight o f the quoted, their ability to envision modernity from such a long

way back into antiquity.

The use o f the quote is literally a literary collaging technique. Musicians are often said

to “quote” when playing a bit o f borrowed melody, perhaps during an improvisation. This

latter use o f “quote” is perhaps less similar to the quotation practiced in writing than sam

pling, such as done for a musical synthesizer or by a tape loop composer or tumtabilist-

there’s no avoiding recontextualizing the quote, whether it’s used to reinforce an argument,

provide counterpoint or launch into a refuting diatribe. There’s no avoiding borrowing

some of the timbre o f the quote, using the color provided by the originator. It may provide

historical evocation, a temporal transplanting. The sampler may highlight their splicing

bravado through an improvement in the dynamics o f the original, otherwise cheeseball,

recording. Art wishing to prove itself by magnitude o f emotional response may use unex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 78

pected juxtaposition o f quotes to create the uncanny or humorous- uncanny and humorous

as in a sample off a scratchy vinyl recording used by the band Man or Astroman which

I now quote, “in case of nuclear attack, the preservation of records is vital if this country

is to maintain its economy and carry on its way of life” [38]. This essay starts with an

original poem, unique to this essay. The first paragraph provides a brief critique o f essays

that commence similarly but with a collaged bit o f quoted text.

Quoting out o f context may be an error, malicious or glitch, ie. intentional recontextu-

alizing. The author’s intended meaning may exist so contentiously or obscurely that little

hope exists to find a usage agreeable to everyone. For instance, Friedrich Nietzsche’s writ

ing is one frequently cited and cited as being frequently cited out of context. Prudence

suggests avoiding conjuring such a writer, but his ideas are presented so forcefully and

eloquently many can’t resist. And how can we blame his fans and detractors from their

errors when he himself employed a style that often included apposing comments within the

same passage for the sake of contrast and an enthusiastic urge to revise one’s argument in

realization that, over a lifetime, contradictory claims would surely emerge- the presenting

o f an immutable edifice of achievement bowing out to the sublime demonstration o f growth

and reflection. This essay quotes from the style o f The Gay Science, which opens with a

prelude in verse [39].

A “scientific” interpretation o f the world, as you understand it, might there

fore still be one of the most stupid of all possible interpretations o f the world,

meaning that it would be one o f the poorest in meaning. This thought is in

tended for the ears and consciences o f our mechanists who nowadays like to

pass for philosophers and insist that mechanics is the doctrine o f the first and

last laws on which all existence must be based as on the ground floor. But an

essentially mechanical world would be a meaningless world. Assuming that

one estimated the value of a piece o f music according to how much of it could

be counted, calculated, and expressed in formulas: how absurd would such

a “scientific” estimation o f music be! What would one have comprehended,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 79

understood, grasped of it? Nothing, really nothing of what is “music” in it!

And what would one have understood in “formulas” if they are known as nothing more

than mechanics? In addressing this question, a thorny issue hanging from the previous es

say may be addressed. I ’ve argued for transparency in design o f artifacts- not that compo

nents should be rendered invisible but that they shouldn’t obscure their mechanical relation

with other components. What’s the value in this clarity? Given the mechanical complexity

o f many of our day to day artifacts like computers or over-the-counter drugs, isn’t it too

much to demand that the user become intimate with workings o f their design? Perhaps.

The urging here is not that the user must make this effort, but that the design avoid putting

up unnecessary hurdles to those who do. The artist who examines the mechanical may

indeed find value in the result o f meaning. The remainder o f this essay will be devoted to

a nexus o f mechanics, meaning and artist; specifically, how access to mechanism allows

the artist to construct meanings, in the process mollifying obsequiousness to a machine’s

fabricator. The outline will start with an examination o f causality and a justification based

on intuition then proceed to discuss correctness, synthesis and knowledge. The bigger pic

ture remains a justification for literacy, in this case literacy as practiced with a common

mechanical appliance, the computer.

In a few cases, formulas comprise an indispensable component o f mechanics where it’s

unnecessary to even make much o f a distinction between the two. Formal mathematical

analysis, the guardian of the formula, wouldn’t be much without the formula; the mechan

ics o f the enterprise organically includes the formula. But, pencils, conferences, cocktail

parties and watercooler debates are also part o f that mechanics, particularly when consid

ering how the formulas come to have a meaning, ie. that they are true or are not [40],

Computer programs are formulas and integral parts of the computer’s mechanics. The ac

tual rendering of the formula, ie. text typed out on the screen and the associated underlying

data structures in the logic circuits and memory devices, is vital to mechanics o f the task.

Without the program, the mechanics breakdown. Take the formula away, and the computer

is as useful as bicycle without wheels. The equation modeling the flow rate from a cask of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 80

wine exists independently of the cask and carafe. The wine will flow without it. The design

is straight forward and familiar enough that to increase flow, most o f us will either try to

increase the size o f the hole or increase the pressure by tilting the vessel; although, perhaps

not with a large wine cask. Many besoted partiers without a single day of calculus to their

credit know to pump the keg, thereby increasing pressure and flow. These are formula-free

understandings of mechanical causality. Formula-free, formulated or modeled by formulas,

each mechanism entails causal expectations.

Causality. One thing proceeding to the next. In physical systems something causes

something else thus suggesting a temporal relation. First this then that. Gear one turns

gear two. I ate bad fish then I got sick. The notion o f causality exists temporally in these

exams. My desk holds up the computer, lamp and stapler. The support against gravity is

instantaneous and continuous and free to ignore time from moment to moment as much as

any o f us are able to ignore time. A mathematical proof is temporal in that there is a series

o f steps; although, the steps can generally be easily run in either direction and, indeed,

proofs are often arrived at by knowing the start and the final outcome, which is assumed

to be correct, and subsequently filling in the rest. The causality exists between the steps,

like a thin film existing between gear one and gear two. It is the stuff between the steps

that causality is made of. And in the case o f proofs the stuff that allows the steps are the

axioms, the basis of the argument, the rules allowing the proof to operate mechanistically.

The axioms, in turn, may very well have once been theorems, algorithms, programs in need

o f proving but that have since become widely accepted as an acceptable starting point.

A dilemma of magnitude should quickly be apparent particularly when the process is

considered recursively. The axioms needed proving; the axioms for those antecedent proofs

needed proving and so on down the line. I f it wasn’t already, causality suddenly seems

pretty hard to pin down. The thin film between the gears, holding up the lamp and justifying

the next line of code becomes an infinitum o f even thinner layers. Mathematicians, thinkers

who wade regularly into such patterns, have among their ranks some comments.

On the contrary, I find nothing in logistic for the discoverer but shackles. It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 81

does not help us at all in the direction o f conciseness, far from it; and if it

requires twenty-seven equations to establish that 1 is a number, how many will

it require to demonstrate a real theorem?

Richard A. De Millo and his colleagues attribute this bit o f reassuring reflection to the

mathematician Henri Poincare in their article without citing a specific reference [40], It’s a

curious comment for a worker who preferred to work his proofs from first principles, from

the basic to the complex. A comment of frustration perhaps? Most of us are willing to

jump blindly into the middle, proceed without full understanding. Indeed there may be no

other way to tackle many problems. Their magnitude is unknown until they have been cir

cumnavigated; the first principle wouldn’t even be recognized until its progeny understood

as they can at a local level. Indeed, the entire question o f which principle should be first

principle might be asked. While A may exist independently o f B and B not independently

o f A, in the process o f discovery, B may be more distant and even unreachable without

passing through A just as I cannot reach the basement of a house without passing through

the first floor held up by the basement.

Few would doubt the utility o f formulas. Most would prefer that they operate correctly,

particularly when critical to health, happiness and well being. But the question o f how well

they can capture truth is less clear, a murky debate ripe for philosophical pondering and rich

in history o f such musing. The debate flared up in the computer field, not coincidentally,

about at the height o f interest in computer literacy and during the incipient rumblings over

the new discipline of software engineering. As a consumer, I would certainly hope that

engineers take what precautions they can to ensure that formulas are correct. But programs

are very complicated formulas often working in highly dimensional space with data that’s

difficult to impossible to predict.

One school o f thought is forcefully argued in Edsgar Dijkstra’s reflection “On the Cru

elty o f Really Teaching Computer Science” [34], Dijkstra makes a strong case for the

teaching of abstraction in computer science at the expense o f software engineering, which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 82

he calls the “doomed discipline.”1 The debate parallels the unnecessarily recrudescing

struggle between rationalism and empiricism, or at least their operators deductive logic and

induction. In this view the computer is a symbol manipulator, nothing more. Programs

are formulas and like their mathematical counterparts, can be proven. The can be proven

using formal methods and Dijkstra argues they should be proven, making formal proofs

a cornerstone o f computer science education. O f low regard in Dijkstra’s argument is the

more empirical approach o f engineering, ie. model and test. Testing in engineering may

include stressing the application against possible input data. But Dijkstra would deny stu

dents the feedback o f running their programs, avoiding the iterative approach o f coding,

testing, modifying. Experimentation is removed from the programmer’s toolbox.

Teaching to unsuspecting youngsters the effective use of formal methods is one

of the joys o f life because it is so extremely rewarding[34],

Dijkstra suggests a joy that is beyond the engineering sureness o f a correctly working

program- Dijkstra appears to want to clean up engineering, for instance, suggesting that

programming bugs should be called by the more appropriate name “errors.” But, the mo

tivation appears from a different place than wanting to build better bridges or airplanes.

The formal proof is joyful because of its allegiance to truth, and truth must be deductively

knowable, ie. rational. O f course, the formal proof is true in that it follows its rules or,

alternatively, contains syntactical errors and does not. The proof’s correlation to other truth

remains an outstanding dilemma as does meaning, except, perhaps the meaning that the uni

verse operates on causality quite deeply. The enemy o f the formal proof in this argument

is intuition. But in this case the enemy is left ambiguously defined as the ambiguous, that

which may interfere with formal proof’s clarity. Seymour Papert describes this a misvalu-

ing o f intuition by unfairly making it the scapegoat o f our mental errors. Indeed, intuition

should be defended for its valuable role to mathematics and thinking in general.

1Dijkstra also harshly criticizes artificial intelligence. The argument, simply put, is that computer science

wastes its energy attempting to mimic such an inferior device as the human mind. It should be striving to

offer a better alternative.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 83

DeMillo, Lipton and Perlis explicitly identify themselves as “antiformalists” in their

previously mentioned article, “Social Processes and Proofs of Theorems and Programs,” a

broadly viewed but deeply implicated pondering that predates Dijkstra’s “On the Cruelty”

lecture by a decade. Ostensibly, the goal is a defense o f software engineering, an empirical

approach o f trial and error striving to write the best programs possible to deal with messy

“real world” problems. The problem could be simply stated as one o f economy, and most

o f us would probably be satisfied. Who wants to prove the program tracking payroll for the

French National Railroad, which in 1979, apparently had 3000 different pay rates differing,

for factors as esoteric as the grade o f track on which the train had traveled [40]? Or, from

my own experiences, how to move Sumitomo Pharmaceutical’s GATC gene expression

data and its correlating meta-data of messy patient medical histories from spreadsheets

into a relational database- who smoked, who has an allergy to shag carpeting, who had

a hysterectomy in 1976. When theorems can go thousands o f years unsolved, or appear

solved only to be “proved” incorrect hundreds o f years later, good enough is good enough

for programming everyday problems, let the trains run on time, mostly if not always. These

authors take a further step in contradicting the position of program specification as an

exercise in formal mathematics by examining how proofs come to be believed, a process

they find rich in its social dimensions and more often than not bystepping that immutable

gluing film o f causality.

While the social process, itself, may have mechanism and causality, hypothetically re-

vealable by sufficient dissection, a key philosophical difference is the many substitutions

o f “is” with “believe.” The epistemological question addressed by rationalism, empiricism

and its many reasonable synergisms is not one o f how we come to know truth but how we

come to have beliefs about truth. At issue is the relationship of what we know with what is

actually going. It’s a reasonable difference since, no matter how direct the connection, the

inside o f my head and the inside o f the sun are two different places, or at least there’s no

reason not to maintain that they are. Now, it’s important to pause for a moment. Since many

heady philosophical issues suddenly present themselves. These questions have been better

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 84

dealt with elsewhere by more capable philosophers. The task presently is to raise questions

o f design o f software and the use o f the computer. These philosophical inquiries will offer

context for considering humans interacting with their artifacts, computer software in this

case. Differentiating between what I know about the inside o f the sun and the actual inside

o f the sun admits the possibility that mental models are a reasonable analogy to thoughts.

“Mental models,” afterall, rolls off the tongue so nicely it’s easily accepted as euphemism

for thinking. But, in some paragraphs further on, “mental models” may become a bit sti

fling. “Mental” suggests confinement to the head, an unfortunate limitation that ignores not

only the role o f the rest o f the body in thinking but ignores the role o f artifacts in thinking as

well. “Model” underscores that the thought is only representative o f some other real thing.

While this shouldn’t overtly hurt the subsequent argument, it may belittle the very real con

nections between the real and the real model. Back to belief versus truth. Deduction, when

following its own axioms, certainly can be proved more or less correctly. Not every math

problem ever solved, say on student tests, has been solved correctly. Transcription errors

and logic errors abound and even by their own internal rules formal proofs can go astray.

What we know, well, just isn’t always correct. So deduction isn’t perfect- this a realization

before even discussing deduction’s reliance on messy old empiricism. Deduction isn’t per

fect in obtaining the correct answer, but can deduction know perfectly? Can I answer any

possible question about the internals o f the sun without a mental model that’s a perfect little

sun burning in my head? Even such a complete bundle o f thermonuclear thought would

be incorrect in magnitude.2 O f course, most logicians, including Dijkstra I believe, would

argue that few proofs are worked out by finding all combinations o f possibilities [34], It’s

quicker to work with definitions than every member in the set o f the definition. And with

2Without specifically referencing mental models, Emily Dickinson optimistically noted the substantial

carrying capacity o f the brain [41], “The Brain is wider than the sky, for, put them side by side, the one the

other will include with ease, and you beside.” While I agree with the ecumenical punchline o f Dickinson’s

poem so far as god as mental construct, “The brain is just the weight o f God, for, lift them, pound for pound,

and they will differ, if they do, as syllable from sound,” the first verse suggests an impossible omniscience,

an ill-fitting one-to-one correlation o f mind and sky, a sky without horizons.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 85

the introduction of definitions, rationalism, the prodigal explanation, has been reunited with

empiricism. Thinking deductively about the sun starts with the observation of the sun or at

least a suggestion that the sun exists such as a midwinter postcard from the tropics. On top

of that, there’s nothing stopping me from examining my own rational thoughts empirically

since, like I sense the sun, I can sense my own thoughts.

Writing a proof may be accomplished with paper and pencil. Believing a proof is en

tirely different. The social process o f which DeMillo and team write occurs at conferences,

cocktail parties, lunches, watercooler chats among other forums that include both schol

arly and informal discussions. The ground turned out by the tines o f this process is belief

about the correctness of the proof. That “p ro o f’ needs proving even in its completely

explicated form should raise doubts about the truth-stuff gluing together the immutable

steps to the proof. That the social processes determine belief in a theorem and not nec

essarily the formal steps of the proof, which may not even exist in some cases, might be

demonstrated anthropologically. But, DeMillo, Lipton and Perlis, being computer scien

tists, continue their analysis with a critique o f the formal proof. Where Dijkstra finds the

magnitude o f the computing machinery “radical” and “revolutionary,” they find the mag

nitude o f proofs monstrously debilitating- citing, as an example, Alferd Whitehead and

Bertrand Russel’s lengthy Principia Mathematica . While that three volume work covered

many basic mathematical axioms, it hadn’t even taken on the three thousand pay rates of

the French National Railroad. Historically, once accepted proofs can come to be discred

ited. Famous examples include Fermat’s Last Theorem and the Riemann Hypothesis that

have seen proofs come and go [40]. Similarly, DeMillo et al. describe an incident with

two proofs derived by separate research groups working in the area o f homotopy, the con

tinuous (or analog) transforming o f one function into another, which incidentally was also

a key interest o f Poincare. The two proofs contradicted each other. But when the research

groups exchanged results, neither could find fault with their peer’s work. The successful

proof can be equally confounding, DeMillo et al. noting that Paul Cohen’s work with forc

ing in set theory was hardly understood even by competent mathematicians when it first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 86

appeared. Finally, this assumes that people can stomach, without erring themselves, the

dense notations often employed in formal proofs.

These problems all share a common thorn in the finger o f truth by formal logic; hu

mans must experience and interpret the proofs. There is a transformation from the original

informal specification motivating the proof to the actual proof. While the proof may be de

ductive, it must be sensed, experienced and very likely only in small parts at any given time.

One cannot focus on the entire proof simultaneously, most o f the logic being held in place

by memory but beyond the horizon of immediacy. That all might even be reduced to a proof

has, itself, yet to be proven. The possibility exists on top o f a faith, perhaps probabilistically

based, ie. that since some things work out as proofs, it’s iogical that everything should work

out as a proof- induction justifying the admissibility o f proof in truth-saying. It’s probably

a safe conjecture that everyone I ’ve dragged into this debate, including myself, likes formal

proofs to some degree. After all, these are the musings o f mathematicians and computer

scientists each o f whom has found utility in the formal proof. But the mechanics are not

always similar, ie. formal proof versus experimentation. What is understood as the mean

ing of the formula articulated as “you don’t get something for nothing?” The correctness

o f the formal proof may be reassuring, free o f vagaries and ephemera, but such confidence

comes at the price o f ignoring the question o f causality by predefining acceptable incre

ments to proof’s movement. The other position, for the moment labeled the antiformalist,

casts suspicion on all that is sure by not only questioning the origins o f first principles but

also the possibility o f ever finding all first principles and connecting them to all other first

principles, whether logically impossible or merely humanly impossible. Suspicious, but

not necessarily uncanny. One needn’t prove gravity to get out o f bed. The antiformalist can

boast strong support in our deep experience of the many things that work most o f the time

as we expect them too- that and an approachable notation.

The two opinions could be distinguished by the admissibility o f intuition. The formalist

regards intuition as intuitively misleading, a crutch of laziness where the rigor o f proving

has yet to extend. The Dijkstra human must bd truly lost in the world with their inherently

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 87

faulty intuition. Curriculums stressing formal proof should be designed “to further sever

the links to intuition” [34] But this hardline stance is comical. Intuition is ineluctable. It is

intuition that would drive a belief that formulating the absolute is possible. Even if all was

proved, formally, the exegesis would be so enormously beyond the human attention span,

intuition would provide the compass to navigate the argument. And, this is a big punchline,

intuition is the glue holding together the components o f the proof. The validity of a causal

relationship will only be broken down so far, irregardless o f whether further reduction is

possible. The process needn’t continue beyond the point where intuition has been satisfied.

This last point essentially provides a defining description o f intuition, the unit o f proof that

is accepted as obvious.

As an aside comparing optimistic and disparaging views on intuition, let’s return to

Poincare for a moment, a mathematician well known for rigorous proofs and previously

noted in this essay for recognizing the role o f the aesthetic in mathematical research. In the

chapter o f The Value o f Science titled “Intuition and Logic,” Poincare gives intuition a dual

role in mathematical inquiry in some ways similar to phenomenological suggestion of its

meaning, ie. he appears to regard it as a basic unit of truth [42]. But he finds these units

differ between different individuals who he calls “analysts” and “geometers”

M. Meray wants to prove that a binomial equation always has a root, or, in

ordinary words, that an angle may always be subdivided. If there is any truth

that we think we know by direct intuition, it is this. Who could doubt that an

angle may always be divided into a number o f equal parts?

Poincare goes on to point out that Meray, an analyst, does in fact doubt the truth based

on intuition, going on to develop a several page proof to demonstrate to himself that it is so.

Professor Klein, “the celebrated German geometer,” feels no such need and instead relies

on analogy to electrical currents on metal surfaces to develop his justifications. Poincare

doesn’t fault intuition for mistakes but rather blames imagination, for instance, we can

not imagine a line without width, though that is indeed the part o f the definition o f a line.

Furthermore, the two cohorts differ in their use o f sense, the geometers being “intuition-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 88

alists” with an urge to paint and the analysts “logicians,” who also rely on intuition but

one free o f sense and rather an intuition o f pure number. In this way, Poincare presents an

argument between those compared above, that the geometers are working more like Papert

while the analyst more like Dijkstra. The roots for this schism, he posits, are deep, “The

mathematician is bom, not made, and it seems he is bom a geometer or an analyst” [42],

The differences are fundamental and ineluctable properties o f the human mind, a position

which will not be further debated here other to say that this appears, to me, far too self-

fulfilling a prophecy, one that fails to account for the plasticity o f the brain or that analysis

and geometry are social and cultural enterprises that occur outside an individual as much

as within and perhaps needn’t exist at all. Stopping short o f speculating any value judg

ment Poincare might have made on the utility o f intuition, if one were to believe a mind’s

predetermination to a type o f intuition is ineluctable (though I do not necessarily believe

this), then surely intuition plays an invaluable role in human experience, understanding and

construction o f knowledge and culture, its influence and importance equally ineluctable.

A former employer o f mine, Dr. Alan S. Segal, more than once chided me “assume

makes an ’ass’ out o f ’u ’ and ’m e’.” O f course, his research career, in small part, rested

on the outcomes of the electrophysiological experiments I had been hired to conduct. His

concern was understandable and softened by good humor and tolerable criticism. Intuition,

to be fair, has no perfect track record. It gets us lost down the wrong roads, the wrong

lovers, the wrong fish taco, the wrong shirt-pants ensemble and the wrong lines o f reason

ing. But, these misses provide testament to intuition’s ubiquity, not an unavoidability of

abject council. Intuition can join the ranks o f deduction, formal proofs, empiricism and

any other prescriptive or descriptive model o f thought- a “bug” is an “error” and by any

other name would be equally incorrect. But to prelude the next two themes, intuition is

trainable and intuition is more than gossamer. Intuition can supply as firm a grounding as

any available.

Computer science’s cousin cognitive science has, like philosophy, endeavored to pro

vide a more meaningful understanding of intuition than as faulty faculty and scapegoat to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 89

our poorer decisions. At issue, for most, is not the existence of intuition or even that it plays

a role in mathematical understanding, but its trustworthiness and utility. This juncture re

turns to the topic to computer literacy. One of the earliest proponents o f teaching computer

programming, particularly to a receptive audience such as children, was Seymour Papert-

co-founder o f M IT’s artificial intelligence program and careful student o f Jean Piaget. Pa-

pert’s contemporary, Alan Kay, suggested literacy was not the ability to read marketing

labels but the fluency with which to plow through philosophical writings and prepare fluent

critiques; in closer reference to mathematics, literacy was the ability to identify a problem

that benefited from mathematical modeling and possession o f the necessary skills to ac

complish that task, skills that now invariably involve computer programming o f some sort

[35], Arguably, these are richer goals than the more commonly heralded expectations of

operating an employer’s office productivity and database software. Papert elevated the bar

higher yet. First, debugging (or “de-erroring” as Dijkstra might prefer) is a widely

applicable problem solving skill that transcends disciplines and is easily honed in the

programming environment. If there’s a single sentence in my thesis looking to make the

case for computer literacy, it is this. That debugging computer programs involves problem

solving is unlikely to be contentious. The argument values programming for reasons other

than simply operating the computer; thus claiming programming to be extraneous to the

masses when more user-friendly interfaces exist offers irrelevant protest. Finally, the utility

o f learning debugging can stand with an appeal to economy, religion o f so many pragma

tists and industrialists, without appeal to philosophy. Fortunately, Papert does not leave the

argument at that and does extend his analysis with the rigor and elegance o f philosophy.

Papert had worked in Geneva with Piaget and in his book Mindstorms: Children, Comput

ers and Powerful Ideas [2] generally admires Piaget’s genetic epistemology- that children

are exquisite and capable, even innately, epistemologists who busily bootstrap themselves

by acquiring knowledge, acquiring strategies for acquiring knowledge and thinking about

what knowledge is. Children, and by extension all o f us adults too, are busily using our

intuition to comprehend the world and, yes, our intuition is sometimes wrong. Intuition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 90

needs debugging. While this does not yet directly address why intuition should be cut

slack into our consideration, other than by its sheer inevitableness, the challenge is raised

to build strong, correct intuitions.

Perhaps, the idea o f debugging intuition hasn’t strayed far from what the formalists seek

while supposedly ignoring intuition and laboring on proofs. Without a serious sidetrack

into why intuition is faulty, a few examples would suggest the overextending o f patterns

for blame in some circumstances. A model provides an abstraction workable in many

scenarios, but not necessarily universally. Papert provides an example o f a gyroscope [2],

The gyroscope is balanced on a narrow base and, intuitively, should fall over as objects with

big bodies and tiny feet often do. While one may question the physics o f the phenomena,

one may also question why their often correct intuitions led them astray. To paraphrase

Papert, one doesn’t need proof that the gyroscope will stand; it’s already obvious through

experience that the gyroscope will remain upright while spinning. One needs resolution

with their conflicted intuition. Working out and contemplating proofs may help provide

an examination o f intuition and means for its extension. The computer provides another

platform for experimenting with intuition’s expectations. Write a program that models

something, perhaps the gyroscope or perhaps something simpler like the area of a right

triangle. Run it. Are the results as expected? Finally, if all is not well, what changes might

be made to the program to correct the behavior? Surprises could be the beacons o f evolving

intuition. The program acts as placeholder for memory as well as an instruction list to the

machine on how the model should run. The neophyte programmer is not being asked

to prove the program but to prove their intuition via the program. It’s important to note

that Papert’s examples in Mindstorms needn’t get dragged too far into the debate between

formalism and software engineering. The initial models demonstrated with turtle graphics

in the Logo programming language are small and geometric such as writing an instruction

list that causes the turtle to sketch a triangle on the screen. The program already contains

all the data it will ever need. It is a proof o f itself, a set o f one, and not rigorously a proof o f

the general case appliable across some larger set. However, the experience, the “ah-ha” o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 91

the cause-and-effect experimentation feedback, betters an intuition that may subsequently

be directed to many tasks, including proving the general case for a set.

It’s not an obscure extension to stretch the computer as mathematics laboratory to a

place to experiment with the phenomena mathematics is sometimes called on to model,

like physics. Indeed the very idea of model suggests that the mathematics isn’t just playing

for its own sake. The word used in the Logo community is “microworlds” and it surely

contains echos o f virtual reality. The association o f modeling and virtual reality is perhaps

unavoidable since the latter must make strong use o f the former. My analysis o f virtual

reality would be long, vitriolic and highly polemic. The counterpoint for that analysis

would be art history and the suspicion that the development o f virtual reality will parallel

art history in its quest for mimesis (classical), its failure to attain it, an introspective period

where it asks itself what it is instead o f what it tries to be (modernism) and when it finally

cloys o f that will move happily forward as entertainment without its earlier pretensions.

Perhaps the full thought will be forthcoming in another volume. But, I ’ll be more pleased

if I can avoid ever having to write it. For now, modeling and virtual reality will be compared

in light o f computer literacy and say that two ideas imply different scopes o f control for the

user. Modeling is usually undertaken to help better understand a problem, like building a

bridge or the epidemiology o f an infectious disease, in an economical and safe manner. In

ideal cases, the model is easily modified and scenarios compared.

Given the virtual reality insinuation o f a “microworld,” one should ponder which intu

itions are being debugged? Could it be nothing more than the intuitions needed to write

a correctly functioning program? Excluding sitting up, crawling, throwing things, walk

ing, sledding, jumping and the like, my own early confrontations with my intuitions about

gravity were not spurred by gyroscope; although, I recall finding them fascinating but ac

ceptable in and o f themselves. O f vivid recollection, because o f the dilemma presented

to my intuition, were the competing models o f gravity I had from experiencing my own

body, my early exposure to mathematical modeling o f gravity and the virtual carton body

o f Wiley Coyote as it fell, along with enormous sandstone slabs, again and again down

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 92

unimaginably deep canyons. While any first hand experience I would have with the Amer

ican desert southwest would wait two more decades, there were also some serious incon

sistencies with rumors I had heard about feathers, cannonballs and leaning towers and my

own experiments jumping off the tops o f some sandy landslides along a nearby river bank.

Why did Wiley and slab sometime hang for seconds in thin air before gravity kicked in?

How come rates o f acceleration o f slabs, coyotes, roadrunners and the occasional acme

explosive device suddenly change relative to each other? How was a slab able to act like

a teeter-toter with the end bearing Wiley levered downward in midair without any seeable

fiilcrums? Why couldn’t Wiley simply change direction by stepping off the slab, sideways,

or jumping straight up prior to impact and thus save himself yet another flattening, which

I clearly and correctly associated with rapid deceleration in the downward vector? The

intuitive dilemmas presented exciting challenges despite the virtual source and, hopefully,

most have been cleared u p - for instance, with clarification via a .22 rifle and some beer

cans during yet another childhood developmental stage, one not covered explicitly by Pi

aget. Aiming directly at the bottle fails to assassinate it, the bullet never truly travels a

straight line. The slab and Wiley must hang in midair long enough for Roadrunner to pop

his head in from the side o f the screen. It must hang while Wiley and Roadrunner calmly

look at each other, Roadrunner with an innocent insouciance and Wiley an indefatigable

resignation at having not only missed his prey as surely as Evel Rnievel missed the jum p

in Snake River Canyon, but with similar consequences. The slab must hang in mid air long

enough for Wiley and Roadrunner to slowly turn, in unison, and share the sentiments drawn

into their countenance with a stare out o f the screen toward us the viewers. Finally, before

the slab starts a decent o f instantaneous acceleration, Roadrunner must “meep meep.” The

slab hangs because there is cartoon meaning in running amok o f our intuition. The gravi

tational pause isn’t license or convenience, but an intentional flaunt in the face o f intuition

meant to provoke the uncanny.

Models reflect. A model, like a popsicle house, abstracts attributes o f an ideal model,

a house, for consideration. Computers are math machines and as such are excellent for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 93

directly exploring mathematical ideas, particularly those o f combinatorics. Computers can

also be used as musical instruments. O f course, one can tap at the keys, drum on its side or

rip it from its cubicle foundation and send it noisily crashing through a plateglass window,

sounding a resonating and shattering thud on the pavement ten stories below. The com

puter is full of oscillations, both symbolic and electrical, controllable by the program. Any

computer can do this and most personal computers today come equipped with audio cards

that will condition these oscillations to be played through speakers. A music synthesizer

contains many “models” o f analog sounds, but the musical performance stands on its own.

The musician may quote or sample. The composition may even model an environment. A

favorite free jazz trio o f mine, The Fringe, does a mean swamp full o f frogs using only ana

log instruments: a drum kit, saxophone, bass and the murky light o f the Willow Jazz Club.

The timbres are largely those expected o f a jazz trio, but timings belong to a stagnant pool

full o f amphibians and a few flying pests. The musical composition doesn’t require formal

proof even though formal devices may be used in musical composition such as counterpoint

or algorithmic music. The computer, program and all, is not acting as a proxy or reflector

o f an outside system via abstracting functions.

Without delving into the deep questions o f what is judgment and what is aesthetics,

more popular fodder for philosophical consumption, suffice to say that the correctness

o f some computer programs depends largely on aesthetics. While some heady algorithm

based music like Bach’s counterpoints or minimalist Terry Riley’s “In C,” the key and not

the programming language, may be in search o f a proof; the typical sweaty, dim, flesh filled

club is likely to let it, and many other things, slide. Turtle graphics, the early graphics util

ities o f the Logo programming language and the core o f Logo as a curriculum, appealed

to the students’ aesthetics. Programming a turtle to sketch on the screen presented definite

formal problems such as, “how to describe a square in the Logo language.” But combining

squares with triangles, circles and other shapes to create the picture o f a house, flower and

setting sun makes an appeal to correctness somewhere other than the continuity o f deduc

tive steps for a set o f axioms and lemmas. While such a goal and the freedom to explore an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 94

openended question, or rather an openended answer, endears programming to those who’d

prefer to be drawing over proving, Papert, following arguments o f Poincare, suggests that

aesthetics plays an important role in mathematical insight.

In reality, according to Poincare, the mathematician frequently has to work

with propositions which are false to various degrees but does not have to con

sider any that offend a personal sense o f mathematical beauty [2],

So, let’s review. Whether formalist or antiformalist, a description labeled as “intuition”

usefully demarks a basic unit o f acceptability. But where to ground this intuition? The

sensuous. Sense.

And with the sensuous I’ll make reluctant bedfellows o f the logicians and the phenome-

nologists. Perhaps it’s glitch philosophy to do so. I ’ve been warned. But the defense will

be that it’s a consideration by which to view design decisions, particularly in designing the

use o f computers. The excuse will be that I ’m a geek considering design and simply find it

useful to do so. The link springs from phenomenology at the request o f epistemology, par

ticularly logic, but not necessarily logicians. With modem philosophy and its fulcrum on

Kant, debate over thought’s relation to truth and mechanisms for coming to have beliefs has

been fruitful but mired in abstractions o f thought-in-the-head. Rationalism and its operator

deduction, empiricism and its operator induction or some combination of the two has failed

to capture intuition, despite relying upon it. Empiricism may, mechanistically, come first

and last with deduction providing economic thought crunching in between, perhaps even

necessitating the creation o f a subconscious since, as soon as deduction occurs at a con

scious level, it morphs into empiricism, closing the metaphysical circle as we empirically

consider our own deductive thoughts. The two explanations, deduction and empiricism,

are analogous to homotropic functions; the space encompassed allows easy “you can get

there frotn here” but the space remains locked up as abstractions, head thoughts and mental

models. The dancer, the surfer, the saxophonist, the linebacker, the waiter deftly moving

across a crowded floor with brunch for four balanced from his shoulder, for instance, ex

hibit refined proprioception. Psychology may create mental models explaining the spatial

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 95

sense o f our own bodies and the coach may chalk-out a play in a blackboard schematic, but

the body will make the moves. The phenomenologists, while kept company by artists and

athletes, provide an eloquently written consideration o f the embodied mind, a mind that

does not exist without the body anymore than thought exists without intuition, intuition

based on sense.

Edmund Husserl doesn’t appear to be out to undermine science in Ideas Pertaining

to a Pure Phenomenology and to a Phenomenological Philosophy [43] but rather aid sci

ence in it’s failure to adequately handle intuition. Husserl takes science to task, smug in

its increasingly self-referential successes, for it’s lack o f interest in “de facto sensuously

intuitabie shapes.”

It can then be seen, furthermore, that exact sciences and purely descriptive

sciences do indeed combine but that they cannot take the place o f the other,

that no exact science, i.e. no science operating with ideal substructions, no

matter how highly developed, can perform the original and legitimate tasks o f

pure description.

“Original” suggests a hierarchy and echos “first principles.” The first principle, how

ever, are not necessarily the root node o f some tree on which the leaves depend, but “prin

ciples,” the glue o f the limbs making credible the link between each and every node in

the tree, sensuous edges to the graphs o f more traditional epistemology’s mental models.

While our belief o f the proof may rest on intuition, should that be the interest at hand, it’s

discourse takes the form of “pure description.”

The most perfect geometry and the most perfect mastery o f it cannot enable the

descriptive natural scientist to express (in exact geometrical concepts) what he

expresses in such a simple, understandable, and completely appropriate man

ner by the words “notches,” “scalloped,” “lens-shaped,” umbelliform,” and the

like- all to them concepts which are essentially, rather than accidentally, inex

act and consequently also non-mathematical.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 96

It’s a dangerous proposition to say, “but mathematics can’t do this,” since a new math

is always inventable-just like a new sentence, particularly as math has become more com

fortable with “close enough” estimations, which is at least since Newton and the Calculus.

Maurice Merleau-Ponty, another eloquent phenomenological philosopher and key inter

preter o f Husserl, died in 1961. In 1959 at Citroen and in 1962 at Renault, mathemati

cians Paul de Casteljau and Pierre Bezier respectively developed the cubic curves known

as Bezier curves for modeling curved automobile components. Today such cubic curves

are standard in computer graphics. A surface o f b-spline or Bezier curves would be the

geometry o f choice for modeling the shape o f a scallop. Still, almost any child intuitively

knows the complex shape of a scallop, but how many people can solve a third-order poly

nomial? Merleau-Ponty, who lived another twenty three years past Husserl, more generally

states, “One must look for the sense o f mathematical concepts in the life o f consciousness

on which they rest” [44],

In the case o f electronic music, if not a much wider inclusion o f genres, Nietzsche’s

challenge as to what has been comprehended by a scientific, formulaic estimation o f mu

sic can be turned around. The formulas are the instruments o f production; the “sense o f

mathematical concepts” finding a life in consciousness through the sensuousness o f its mu

sic. Earlier, the paraphrase o f Papert’s analysis o f Poincare’s view o f the role o f aesthetic

in mathematics suggested another sensuousness, one found more directly in the formula

themselves, without music. That will be left to the intuition o f the individual; but, relating

this thread back to computer literacy- the music provides a sensuous answer to the for

mula. Music, or some other appeal to aesthetic, can be explored with the powerful tool

o f formula with its predilections for deconstructing and identifying abstractions, patterns

and connections. For those interested in the teaching o f mathematics, the appeal to the

motivating aesthetic provides the student a means, an end and a vehicle for exploring the

intuitive connection between the two. Shift the challenge from finding the formula to pro

ducing a sound to understanding why a formula produces a sound. That the deductions

correctly follow their axiomatic allowances may or may not be a goal, but understanding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 97

why a deductive step was taken, ie. an appeal to intuition, should always be.

Outsiders see mathematics as a cold, formal, logical, mechanical, monolithic

process o f sheer intellection; we argue that insofar as it is successful, mathe

matics is a social, informal, intuitive, organic, human process, a community

project [40],

Despite DeMillo et al. warmly describing mathematics with kind recognition of the

role intuition plays, science and scientists, in general, were not asking phenomenology for

its help. Positivism alone quenches many scientists’ appetite for philosophical explanation.

Even in Papert’s essay “The Mathematical Unconscious,” in which he strongly supports

the role o f intuition and aesthetics in mathematics, he writes, “ The phenomenological

view of abandonment is totally false,” and goes on later in the paragraph, “This time the

phenomenological view is even more misleading since the finished piece o f work might ap

pear in consciousness at the most surprising times, in apparent relation to quite fortuitous

events” [2], Papert is discussing the role o f the subconscious in mathematical postulation,

a sort of analytical computing area using some sort of memory swapping to communicate

data with the consciousness- “abandonment” referring to the handing down by the con

sciousness to the subconscious m ind’s consideration. Our goal at present is not to reconcile

entire intellectual movements and their progenitors, or even to enumerate their differences.

Rather, if Papert wants his unconscious mind and his mental models, it shouldn’t affect this

argument; although, “subconscious mind” would better avoid confusion with the symptoms

o f high falls, syncope and Friday night drinking binges. Instead, allow the argument to con

tinue its slow segue toward a punchline, or at least conclusion, that meaning is a process of

construction.

Not only is the mind embodied but that body extends outward into our artifacts, and

inward from them. Constructing meaning, constructing artifacts and constructing our bod

ies are one in the same. Artifacts can be inherited, along with their meanings. Computer

literacy allows the user to construct meaning from and around a ubiquitous and poten

tially shackling technology. Within the Papert narrative o f duality- reality and its model,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 98

consciousness and its sidekick the unconscious mind- interesting claims are made about

sense and mental models and its implication on the design o f the Logo programming lan

guage. Papert’s framework o f duality, the design justification o f the Logo programming

language, and particularly turtle graphics, does touch on sense, particularly sense o f the

body. Borrowing terminology from Sigmund Freud and psychoanalysis, Papert argues that

intimate and intuitive knowledge o f one’s own body is a well spring pattern for debugging

mathematical problems through geometry- labeled “body syntonic” in Mindstorms. Pro

gramming becomes a sort o f choreography of the turtle mappable to a choreography o f the

programmer’s body. The program, for instance, could instruct the turtle pen to sketch a

square on the screen. I f the program fails to instruct the turtle to close the shape, perhaps

by missing a ninety degree turn, the program can be literally stepped through across the

ballroom floor, ie. debugging by dance.

This essay began by laboring over a debate played out by logicians. But its theme, if

it’s remained hidden, is on making art, really making art with and out o f technology and

the value for a literacy o f technology. The lengthy discourse on intuition has intended to

provide the bridge between “logic” and “art,” if any bridge is really necessary; some may

find no need for travel between the two words or, maybe, already find them significantly

overlapped. Causality, at least in my naive exposition, has been used synonymously with

meaning, ie. causality is meaning. The cause o f the tree falling in the forest without witness

exists without meaning but to understand or speak o f the cause o f the tree’s fall necessarily

exercises meaning. Causality ultimately reduces to intuition and intuition to sense. Nothing

o f this immediately justifies excitement for computer literacy or art. The populist promo

tion o f literacy is something of a cultural habit springing from enthusiasm for democracy

and respect o f the individual. Art, specifically the act o f fabrication, similarly acts as an

enabler o f self-determination among a people overrun with consuming choices. The enthu

siasm for computer literacy comes from a philosophy of athleticism, a philosophy amply

demonstrated by the do-it-yourselfer.

But while appealing to a populist sense o f equity, advocacy for computer literacy ap

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 99

peals to individualism and a laissez-faire right to make one’s self: that notion being found,

in parts, not only in political rhetoric but in the constructivist education espoused by Sey

mour Papert or the bodily synthesis o f phenomenologist Merleau-Ponty despite their dif

ferences on many points. Sense glues together intuition, causality and meaning with the

body. Our philosophical investigation becomes enriched when the epistemological abstrac

tions o f mind are put into context o f the body, ie. the embodied mind. Mind does not

exist without the body. The mind o f science fiction, a brain floating in solution, is a much

different mind from that moving and sensing its way through the world. The edges be

tween the world and the embodied mind are as transparent as they are crisp. Just as we

might empirically consider our rational, deductive thoughts, the world doesn’t stop at our

skin; the inside edge o f our bodies are inside the world as well. Furthermore, this prose

becomes more powerful when considered in the context that our bodies and minds are dy

namic and in a constant state of synthesis o f what Merleau-Ponty calls “living meanings”

in Phenomenology o f Perception.

Whether a system of motor or perceptual powers, our body is not an object of

an ’I think’, it is a grouping o f lived-through meanings which moves toward

its equilibrium. Sometimes a new cluster o f meanings is formed; our former

movements are integrated into a fresh motor entity, the first visual data into

a fresh sensory entity, our natural powers suddenly come together in a richer

meaning....

With such consideration, how might one consider artifacts as extensions o f bodies?

Outwardly, artifacts are extended body. When we write with pencil on paper, the pencil is a

body extension communicating the forces at the tip to the hand just as the hand moves the

graphite tip across the paper. Merleau-Ponty gives an example o f the cane used by a blind

man, an extending o f tactile sensation.

Hence my body can assume segments derived from the body of another, just as

my substance passes into them; man is mirror for man. The mirror itself is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 100

instrument o f a universal magic that changes things into a spectacle, spectacles

into things, m yself into another and another into myself.

Timothy Leary noted that when he drove a Pontiac, he was a Pontiac. The surfer, the

saxophonist, the gardener mowing the lawn: each like an insect with their antennas feeling

the world around them, internalizing and likely modifying it. Knowledge at a distance,

whether an ancient mariner retelling stories, even apocryphal ones, or the tele-epistemology

o f satellite communications. I sense, in some way, the thunderstorms in Hardwick, VT via

my computer, the internet, a radar station in Burlington. The weather reporting mechanism

extending my sense 4700km. Not only is the biological body, as intermediary o f the senses,

a component o f the mind, so too is artifact as an extension o f the body:

Sometimes pretty language is useful. One could protest that while I might describe

viewing o f artifact as some sort o f transcendental, hippy-dippy fusing o f consciousnesses,

a lot is left up in the air after the gaze. Say I hike out to view some five thousand year old

petroglyphs. For whatever mind-meld transpires, I really have no clue about the important

questions that artist was considering. I can only conjecture the motivations and meanings.

True. But perhaps I am expecting too much; like the freshman’s acid trip, they expected the

gates of heaven but only got a dizzy headache and an upset stomach.3 But something was

learned in the gaze. And something is learned in the feel o f the rock, a sense I now share

with the long departed progenitor o f that creative spark.

Knowledge is not truth; knowledge is belief o f what might be true. The old aphorism,

“I know what I know,” suggests that we act on the best possible information. It suggests

a skepticism in what we know and its relation to truth. And, it suggests that it’s easier to

know the present, to know what we have constructed into ourselves than to actually know

the past. At the same time that I can study artifacts o f the past, I can only understand them

in the present. The past may strongly affect my present, as in a fascist sentimentality. I may

3Or consider the countless jokes over abstract, particularly minimalist, paintings. But the jok e’s on the sar

castic skeptic who fails to recognize that the reified abstraction is realistic while the mimesis o f photorealism

is the fake o f reality, except, again, that they are really fakes and really paintings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2 Essay 101

quote or cite, but the work carries on into the present. What I understand best is the lesson

I have constructed into myself; my conjectures live in the present.

Artifacts impart a hegemony o f the body as well. Prisons or handcuffs are obvious ex

amples. Door knobs, the height o f a chair or the length o f a symphony are others. Designers

talk about the constraints o f designs. Those constraints are often factored into a design for

good reasons such as safety. An elevator door has no handles and I am hard pressed to

open it while the carriage is in motion. Computers and computer software are now full of

constraints. Some o f this arises from the important engineering tasks relying on software.

Should my program encounter data it’s unequipped to handle, better that a fallback mech

anism be provided that allows a graceful failure while the proverbial airplane and nuclear

powerplant may go merrily on their way. Constraints are put into software to protect us

from frustration. The concern is that a constraint on frustrating literacies is equivalent to

illiteracy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6

Conclusion (Open ended of course)

This thesis makes an argument for computer literacy as a generally and widely useful skill,

ie. a basic competency in contemporary education. Although the line is not sharp, “user

friendly” is presented as often at odds with “computer literacy” by embracing design strate

gies that obfuscate the underlying operation o f the computer and creating obstacles to users

taking full control o f the computer’s potential. The advocates o f user friendly designs are

often software companies seeking to increase market share, companies that are all too will

ing to be stingy with their knowledge at the expense o f a more dependent user. While

corporate hegemony motivates my interest in computer literacy, the arguments are built

on top o f those by advocates for constructionist education. Computer programming, as

opposed to multimedia drill-and-quiz style software, lends itself to hands-on education.

Computer programming provides an ideal microcosm for learning modeling and modeling

can be found at the heart of problem solving. Computer programming inevitably involves

debugging and debugging is a problem solving skill that transcends a utility limited to

computer science or computers.

When confronted with learning a new skill or technology, one is likely to start the ex

ploration somewhere in the middle o f things; the point here is to design into the machine

the ability to move up and drill down on the mechanism to a level o f understanding that fits

our motivations. The design of Smalltalk with an IDE that reveals the very code running

its virtual machine is an excellent example o f the principle I ’m advocating. Open source

platforms such as Linux are also an excellent example o f this principle, but Linux, albeit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6. Conclusion (Open ended of course) 103

open source, remains opaque, a hurdle with a significant learning curve. Logo and Lo-

goRhythms provide some alternative teaching languages that hope to help students in the

direction o f having the skills to negotiate more confidently the mess that often accompanies

free software.

What LogoRhythms is: a simple audio API in the Logo language that allows one to

explore programming concepts in the audio domain. The emphasis is on basic manipu

lation of digital sound wave data starting with sinusoids. LogoRhythms is open source,

free and cross platform. LogoRhythms follows in the model o f constructionist philosophy

o f education where students are viewed as epistemologists coming to grip with what their

knowledge is and taking responsibility for its construction through hands-on experience

and empirical experimentation. Open source also allows the student to deconstruct; it pro

vides the mechanical translucency that enables the curious to push their envelope o f causal

understanding.

What LogoRhythms is not: a full featured music synthesis API looking to compete with

the likes o f Chuck or Max/MSP [45] [5]. Beyond lacking functionality such as a scheduler,

it has several serious shortcomings: lack o f cross platform threading, a bulky notion of

arrays that are really linked lists and lack o f a mixer. O f course, given the potentials of

glitch, there’s no reason to completely rule LogoRhythms out as a vehicle for generating

noteworthy music. But, its praxis is firstly educational.

What’s missing here is a good field study, ie. I had hoped to produce a narrative pro

viding demonstration o f the API being used by its intended audience. Such demonstration

provides reflection that the project can accomplish what it purports as well as highlighting

strengths, weaknesses and potential improvements. More importantly though, the project

was meant to serve a real need, to help slow the erosion of computer literacy and give kids

(or adults) the opportunity to see that programming isn’t so arcane and difficult a skill as

the overuse o f the term “guru” would suggest. Given the bureaucratic difficulty o f orga

nizing even the simplest o f user studies within the school system, the project really needs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6. Conclusion (Open ended of course) 104

to be a collaboration with an enthusiastic educator already on the inside of the system.1

The project is open source- more than reasonable given the gracious source o f funding

from a Canadian public university. But as Eric S. Raymond points out in his oft cited “The

Cathedral and the Bazaar,” open source projects fail or succeed on the enthusiasm o f its

user base, enthusiasm coupled with strong leadership [46],

Now then, in what direction might this inquiry continue?

This thesis has provided a three pronged approach toward an examination o f computer

literacy. First, there is the engineering approach via the creation o f LogoRhythms, what

I ’ve also called experimental archeology in that LogoRhythms’s base language o f Logo is

a product o f the heyday o f computer literacy brushed up to take advantage of contemporary

hardware capabilities. Second is a historical approach both tracing the evolution o f the em

phasis in HCI literature from “computer literacy” to “user friendly” as well as examining

who made the early radical revolutions in computer science and where their backgrounds

lay. Third is a philosophical argument that suggests a link between intuition and causal

ity, the body and knowledge, artifacts and hegemony and mechanical transparency as a

democratic design imperative. Underlying much of these arguments is an assumption that

many people in fact do not understand how their computer’s operate or have faulty expla

nations for the computer’s mechanics, that the users may feel a level o f alienation from a

technology that they’re fully aware has been dumbed down to compensate for their simple

understandings. Where philosophy may persuade by a convincing argument, anthropology

can reinforce with empirical study. How do people fetishize the technology? What are the

folk explanations given by the machine’s users for its mechanical operation? For instance,

the brief user study described in chapter 4 included a question, “what numbers can a com

puter not represent?” Among the myriad o f responses given such as imaginary numbers,

rational numbers, really big numbers, Roman num erals- each arguably incorrect responses-

none o f the first year computer science or computer music students noted that the computer

works with discrete numbers, it’s numberlines filled with an infinitum o f sizable gaps.

1 To get access to a classroom in Hawai’i, for instance, involves submitting one’s fingerprints to the FBI.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6. Conclusion (Open ended of course) 105

HCI literature is often mired in the challenge test as evaluation method: how fast and

how efficiently can a user do something. Focus groups, in my experience frequently used

by corporate interface designerd, do attempt to query end users on how they actually used,

felt and reacted to a technology. But how do the users use in situ! Ethnographies o f com

puter users do exist. Some dwell in heady debate o f sociological theory such as Jeffery

Alexander’s “The Sacred and Profane Information Machine” that examines, via public dis

course, beliefs about the computer’s potential as salvation or apocalyptic damnation [47],

Field ethnographies have also been conducted among computer professionals. Examples

include Gary Lee Downey’s The Machine in Me: An Anthropologist Sits among Computer

Engineers and Georgina Bom ’s Rationalizing Culture: IRCAM, Boulez, and the Institution

alization o f the Musical Avant-guarde [48][49], But these volumes deal largely in questions

o f culture and power and the deciphering o f semiotics, less on the simple documentation

o f beliefs and practices, enumerations less encumbered by debate over emic versus etic

perspective. Other studies do employ ethnographic surveys to computer users in an effort

to describe naturalistically how the users actually debug [50] or make software engineer

ing design decisions [51]. I say “naturalistically” as opposed to “prescriptively,” ie. how

people do the job versus what they are told is an ideal way to do the job. Better examples

o f such studies exist in mathematics, perhaps not surprising since mathematics is taught to

most students at all levels o f their education with concomitant concern that the teaching

be effective. Capon and Kuhl studied grocery store mathematics inside (and outside) the

grocery store [52], Carraher et al looked at street mathematics o f primary school dropouts

working on the streets o f Brazil [53] and Masingila examined algorithms used by construc

tion workers laying carpeting for a floor covering company in the western United States

[54], These papers offer excellent examples o f ecologically valid data collection efforts.

While they focus on algorithms used day-to-day, the study I propose here would focus on

the mechanical operation, including programming, o f the computer, not unlike the inter

view based studies o f Piaget for the bicycle [15]. How do just-plain-folks believe their

computer operates?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6. Conclusion (Open ended of course) 106

My own view motivating the design o f LogoRhythms parallels the model set by the

tiny violins used by preschoolers studying classical music via the Suzuki method, a smaller

size appropriate to the bodies of smaller players but fully functional as instruments. Most

programming languages have a specific function for which they are adapted: Lisp to AI

research, Java to enterprise level commercial applications, PHP for webpages, Logo to

teaching, etc... Dane Bjarne Stroustrup writes, “If you think C++ is difficult, try English”

[55], Suzuki posits that since all children can leam their natural language, a harder task

than violin, all children can leam the violin... and leam it well [56], Turning Stroustrup’s

quip around- why not teach children C++? Or maybe just C? Perhaps instead o f creat

ing LogoRhythms, I might have written a compendium o f “ 101 Rainy Day Activities for

Your Kids with C++.” Without delving into the language’s many complexities, it doesn’t

seem unreasonable to introduce variables, arithmetic, sequential execution o f statements,

conditionals and loops, the capabilities necessary for a language to be Turing complete

[57], While it might be harder to explore the digital audio themes o f LogoRhythms in C++,

no doubt creative activities can be imagined that help provide a good imperative language

foundation, for instance, ascii art drawings that show recursive patterns. In a nutshell, from

a didactic point o f view, what’s so bad about a dangling pointer and a crash? The deeper

meaning and value o f computer science isn’t necessarily to make functioning applications,

but rather to explore, sensorially, a formal logic at high speeds. And, to echo Seymour

Papert, to teach the widely useful skill o f debugging. To echo Alan Kay, to provide an en

vironment in which to explore problems by modeling them, to find solutions through rapid,

easily tweaked digital experimentation (which to echo Richard Feynman should never come

to completely replace good old fashion empiricism with real material, prima facia [58].)

But the most important question, o f course, is how does LogoRhythms perform with

real kids and other neophyte computer users? Logo has long proven itself and continues

to exist commercially in LCSI’s Microworlds and in open source format via UCB Logo

among others. Whether LogoRhythms is useful to its target audience remains to be seen

and is a question now best put to the field.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

[1] J. C. S. Bauer, Das erste Zweiradfuhr in Mannheim - Die fruheste Beschreibung der
Drais ’chen laufmachine 1817. unknown, 1819.

[2] S. Papert, Minds tor ms: Children Computer and Powerful Ideas, ls ted . Basic Books,
Inc., 1980.

[3] Microworlds. (2005, October). [Online], Available: http://www.microvvorlds.com/
solutions/index .html

[4] M. Puckette, “Max at seventeen,” Computer Music Journal, vol. 26, no. 4, pp. 31—43,
Winter 2002.

[5] D. Zicarelli, “How i learned to love a program the does nothing,” Computer Music
Journal, vol. 26, no. 4, pp. 41-51, Winter 2002.

[6] B. Harvey, Computer Science Logo Style, Vol 3: Advanced Topics, 1 st ed. The MIT
Press, 1987.

[7] M. Guzdial. (2006, March) Teaching programming with music: An approch to
teaching young students about logo. [Online], Available: http://el.media.mit.edu/
Logo-foundation/pubs/titleindex.html

[8] “Big isle schools on list,” Hawaii Tribune Herald, September 2005.

[9] B. Harvey. (2006, March) Ucb logo download page. [Online], Available:
h tip ://ww w. cs .berkeley. edu/'bh/

[10] (2006, March) Portaudio home page. [Online], Available: http://www.portaudio.com/

[11] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterlink, Numerical recipes
in C : the art o f scientific computing, 2nd ed. Cambridge University Press, 1992.

[12] R. B. Dannenberg, “Machine tongues xix: Nyquist, a language for composition and
sound synthesis,” Computer Music Journal, vol. 21, no. 2, pp. 50-60, Fall 1997.

[13] Nyquist Reference Manual, Version 2.22, CMU, 2002, by R. B. Dannenberg.

[14] D. A. Norman, The Design o f Everyday Things, 1st ed. Basic Paperback, 2003,
originally published 1988.

[15] J. Piaget, The Child’s Conception o f Physical Causality. Harcourt Brace and Com
pany, 1930.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.microvvorlds.com/
http://el.media.mit.edu/
http://www.portaudio.com/

www.manaraa.com

Bibliography 108

[6] K. Cascone, “The aesthetics o f failure: Post-digital tendencies in contemporary com
puter music,” Computer Music Journal, vol. 24, no. 4, pp. 12-18, Winter 2000.

17] C. Stuart, “Damaged sound:- Glitching and skipping compact discs in the audio of
yasunao tone, nicholas collins and oval,” Leonardo Music Journal, vol. 13, pp. 4 7 -
52, 2003.

18] B. Pfaffenberger, “The social meaning o f the personal computer: Or, why the personal
computer revolution was no revolution,” Anthropology Quarterly, vol. 61, no. 1, pp.
39-47, January 1988.

19] ACM. (2006, April) Chi. [Online]. Available: http://portal.acm.org

20] M. Guzdial and E. Soloway, “Computer science is more important the calculus: The
challenge o f living up to our potential,” SIGCSE Bulletin, vol. 35, no. 2, pp. 5-8, June
2003, invited Editorial.

21] W. Bush, V. Donahue, and K. Kelly, “Pattern recognition and display characteristics,”
IRE Transactions on Human Factors in Electronics, vol. 1, pp. 11-20, March 1960.

22] B. F. Green Jr, “Computer languages for symbolic manipulation,” IRE Transactions
on Human Factors in Electronics, vol. 2, pp. 3-7, March 1961.

23] H. Freiberger and E. Murphy, “Reading machines for the blind,” IRE Transactions on
Human Factors in Electronics, vol. 2, pp. 8-19, March 1961.

24] T. Marill, “Automatic recognition o f speech,” IRE Transactions on Human Factors in
Electronics, vol. 2, pp. 8-19, March 1961.

25] M. Minsky, “A selected descriptor-indexed bibliography to literature on aritifical in
telligence,” IRE Transactions on Human Factors in Electronics, vol. 2, pp. 39-55,
March 1961.

26] R. L. Deininger, “Desirable push button characteristics,” IRE Transactions on Human
Factors in Electronics, vol. 1, pp. 24-29, March 1960.

27] F. A. Brooks, “Operational sequence diagrams,” IRE Transactions on Human Factors
in Electronics, vol. 1, pp. 33-24, March 1960.

28] ------ , The Mythical Man Month, anniversary ed. ed. Addison-Wesley Pub. Co.,
1995.

29] I. E. Sutherland, “Sketchpad: A man-machine graphical communication system,” in
AFIPS Conference Proceedings, Volume 23, o f the Spring Joint Computer Confer
ence, 1963.

30] W. K. English, D. C. Engelbart, and M. L. Berman, “Display-selection techniques
for text manipulation,” IEEE Transactions on Human Factors in Electronics, vol. 8,
no. 1, pp. 5-15, March 1967.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://portal.acm.org

www.manaraa.com

Bibliography 109

[31] R. W. Scheifler and J. Gettys, “The x window system,” ACM Transactions on Graph
ics, vol. 5, no. 1, pp. 5-15, March 1967.

[32] J. Callahan, D. Hopkins, M. Weiser, and B. Schneiderman, “An empirical comparison
o f pie vs. linear menus,” in Proceedings o f the SIGCHI conference on Human factors
in computing systems, 1988.

[33] C. H. Museum. (2006, March) Computer history museum - timeline. [Online],
Available: http://www.computerhistoiy.org/timeline/

[34] E. Dijkstra, “On the cruelty o f really teaching computer science,” Communications o f
the ACM, vol. 32, no. 12, pp. 1398-1404, December 1989.

[35] A. C. Kay, “The early history o f Smalltalk,” ACMSIGPLAN Notices, vol. 28, no. 3,
pp. 23-95, March 1993.

[36] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design patterns : elements o f
reusable object-oriented software. Addison-Wesley, 1995.

[37] W. A. Schloss and D. A. Jaffe, “Intelligent musical instruments: The future ofmusical
performance or the demise o f the performer?” INTERFACE Journal fo r New Music
Research, vol. 22, no. 4, pp. 183-193,1993.

[38] M. or Astroman, “Experiment zero,” compact disc, January 1996.

[39] F. Nietzsche and W. Kaufman (trans.), The Gay Science. Vintage Books, 1974
(1887).

[40] R. A. DeMillo, R. J. Lipton, and A. J. Perlis, “Social processes and proofs o f theorems
and programs,” Communications o f the ACM, vol. 22, no. 5, pp. 271-280, May 1979.

[41] E. Dickinson (1830-86), The Complete Poems o f Emily Dickinson. Back Bay Books
UK, 1976.

[42] H. Poincare, The Value o f Science, ls ted . Dover Publications, 1958.

[43] E. Husserl and F. Kersten (trans), Ideas Pertaining to a Pure Phenomenology and to
a Phenomenological Philosophy. Martinus Nijhoff Publishers, 1982 (1913).

[44] M. Merleau-Ponty and J. M. Eide (trans), The Primacy o f Perception. Northwest
University Press, 1964.

[45] G. Wang and P. Cook, “Chuck: A concurrent, on-the-fly, audio programming lan
guage,” in Proceedings o f the 2003 International Computer Music Conference, 2003.

[46] E. S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O ’Reilly & Associates, Inc., 1999.

[47] J. Alexander, “The sacred and profance information machine: Discourse about the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.computerhistoiy.org/timeline/

www.manaraa.com

Bibliography 110

computer as ideology,” Archives de sciences sociales des religions, vol. 69, pp. 161—
170, janvier-mars 1990.

[48] G. L. Downey, The Machine in Me: An Anthropologist Sits among Computer Engi
neers. Routeledge Press, 1998.

[49] G. Bom, Rationalizing Culture: IRCAM, Boulez, and the Institutionalization o f the
Musical Avant-guarde. University o f California Press, 1995.

[50] L. Gugerty and G. M. Olson, “Debugging by skilled and novice programmers,” in
ACM SIGCHI Proceedings, 1986.

[51] D. C. Rine and R. M. Sonnemann, “Investments in reusable software, a study o f soft
ware reuse investment success factors,” Journal o f Systems and Software, vol. 41, pp.
17-32, 1998.

[52] N. Capon and D. Kuhn, “Logical reasoning in the supermarket: Adult females’ use of
a proportional reasoning strategy in an everyday context,” Developmental Psychology,
vol. 15, no. 4, pp. 450-452, 1979.

[53] J. Lave, Cognition in Practice: Mind, mathematics and culture in everyday life. Cam
bridge University Press, 1988.

[54] J. O. Masingila, “Mathematics practice in carpet laying,” Anthropology and Education
Quarterly, vol. 25, no. 4, pp. 430-462, 1994.

[55] B. Stroustrup, C++ Programming Language, 3rd ed. Addison-Wesley, 1997.

[56] S. Suzuki and W. t. Suzuki, Nurtured by Love: A New Approach to Education. Ex
position Press, 1969.

[57] K. C. Louden, Programming Languages: Principles and Practice. Brooks/Cole-
Thomas Learning, 2003.

[58] R. P. Feynman, “An outsider’s inside view o f the challenger inquiry,” Physics Today,
vol. 41, pp. 26-36, Febuary 1988.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix A

AlphabetSynth Source Code

Below is the Logo source code for the AlphabetSynth application discussed in Chapter

A .l
;; qsort
to sort :data

local [1ft rght pivot next]

if equal? 1 count data [output data]
if equal? 0 count data [output data]

make "1ft []
make "rght []
make "pivot first (first data)
make "1ft fput (first data) 1ft
make "data butfirst data

repeat count data [
make "next first first data
if less? next pivot [make "rght fput (first data) rght]
if equal? next pivot [make "rght fput (first data) rght]
if less? pivot next [make "1ft fput (first data) 1ft]
make "data butfirst data

]

make "1ft sort 1ft
make "rght sort rght

output cons rght 1ft

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A.1 112

;; believe it or not, this doesn't seem to be part of UCB Logo
to cons :listl :list2

if empty? Iist2 [output listl]

make "listl lput first list2 listl
make "list2 butfirst list2
make "listl cons listl list2

output listl

end

,■ ; from Harvey
to tree :key :children

local [node]
output fput key children

end

;; from Harvey
to leaf :datum

output tree data []
end

;; from Harvey
to btree :data

if empty? data [output []]
if empty? bf data [output data]
output btreehelper (int (count data)/2) data []

end

;; from Harvey
to btreehelper :c :in :out

if equal? c 0 [
output tree (first in) (list (btree reverse out) (btree bf in))

]
output btreehelper (c-1) (bf in) (fput first in out)

end

to synth

local [wl w2 w3 freq]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A .l 113

;; add a combintion of sinusiods
make "freq 440
make "amp 1
make "wl sinewave freq
make "i 2
repeat 2 [

make "w2 sinewave freq * i
make "i i * 2
make "amp amp/l.4
make "w2 volume w2 amp
make "wl combinewaves list wl w2

]
make "w2 sinewave freq/2
make "w2 volume w2 amp/2
make "wl combinewaves list wl w2

;; add a combintion of trianglewaves
make "freq 43 0
make "amp .6
make "w2 trianglewave freq
make "w2 volume w2 amp
make "wl combinewaves list wl w2
make "i 2
repeat 2 [

make "w2 trianglewave freq * i
make "i i*2
make "amp amp/1.4
make "w2 volume w2 amp
make "wl combinewaves list wl w2

]
make "w2 trianglewave freq/2
make "w2 volume w2 amp/2
make "wl combinewaves list wl w2

make "n noise 1
make "n volume n .05
make "wl combinewaves list wl n

make "wl normalizewave wl
make "wl evenwt wl

output wl
end

to organ :base :fade
make "wave synth
output organhelper (base * (1 / In 2)) :fade

end
:wave [] 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A .l 114

to organhelper :base :fade :wave :data :i
local [env note freq]

make "env list [.9 25] lput :fade [0]
make "freq (base * (power 2 i) * (In 2))
if less? 2048 freq [output data]

make "env list freq env
make "note lput env [soundwt :wave]
make "note list freq note

make "data fput note data
make "i i + 1/12

output organhelper base fade wave data i

end

to organkeys :base
make "base first :list.synth
make "base base * (1 / In 2)
make "c ascii readchar
output (base * (power 2 (:c - 97)/12) * (In 2))

end

to startsynth :func.synth :list.synth :func.getkey :list.getkey
local [freq lasttime deltatime loop cmd b]

make "cmd []

make "b btree sort (apply :func.synth :list.synth)

;; looping has three states 0:off and clear, l:recording, 2:looping
make "looping 0

forever [
make "key apply :func.getkey :list.getkey

test equal? c 58
iffalse [make "cmd last lookup :key b]
iftrue [

if equal? looping 2 [
make "looping 0

]
if equal? looping 1 [

make "looping 2
3
if equal? looping 0 [

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A.l 115

make "lasttime time
make "delta 0

make "loop []
make "looping 1

]
]

if equal? looping 1 [
make "loop fput cmd :loop

make "delta (time - lasttime)
make "lasttime time
make "r [rest]
make "r lput :delta r

make "loop fput :r :loop
]
ifelse equal? looping 2 [

test empty? loop
iffalse [forever [playloop loop :wave]]
make "looping 0

] [
test empty? cmd
iffalse [

test equal? c 58
iffalse [run cmd]

]
]

]

end

to playloop :data :wave
test empty? :data
iffalse [

run last :data
playloop butlast :data :wave

]
end

to lookup -.code :tree
output lookuphelper :code :tree []

end

to lookuphelper :code :btree :closest
local [next less more]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A .l 116

make "this getNodeKey :btree

if empty? :closest [make "closest getNode :btree]
if equal? :code :this [output getNode :btree]
if isleaf? :btree [output closest]

ifelse less? :code :this [
test empty? getlessbranch :btree
iffalse [

make "less getNodeKey getLessBranch :btree
if updateclosest? :code :less first closest [

make "closest getNode getLessBranch :btree
]
test isleaf? getLessBranch :btree
iffalse [make "closest lookuphelper :code getLessBranch :btree :clo

]
i rJ L

test empty? getmorebranch :btree
iffalse [

make "more getNodeKey getMoreBranch :btree
if updateclosest? :code :more first closest [

make "closest getNode getMoreBranch :btree
]
test isleaf? getMoreBranch :btree
iffalse [make "closest lookuphelper :code getMoreBranch :btree :clo

]
]

output closest
end

to updateclosest? :code :next :current
output less? abs (code - next) abs (code - current)

end

to isleaf? :x
output less? count :x 2

end

to abs :x
ifelse less? x 0 [output minus x] [output x]

end

to getNode :btree
output first :btree

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A .l 117

to getNodeKey :btree
output ffrst first :btree

end

to getNodeValue :btree
output last first :btree

end

to getLessBranch :btree
output first butfirst :btree

end

to getMoreBranch :btree
output last :btree

end

;; start the organ alphasynth
load "synthdb.lg
startsynth [organ ?1 ?2] [220 128] [organkeys ?1] [220]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

